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16.323 Lecture 12 

Stochastic Optimal Control 

• Kwaknernaak and Sivan Chapter 3.6, 5

• Bryson Chapter 14

• Stengel Chapter 5
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Stochastic Optimal Control 

•	 Goal: design optimal compensators for systems with incomplete and 
noisy measurements 

– Consider this first simplified step: assume that we have noisy system 
with perfect measurement of the state. 

•	 System dynamics: 

ẋ(t) = A(t)x(t) + Bu(t)u(t) + Bw(t)w(t) 

– Assume that w(t) is a white Gaussian noise 20 ⇒ N (0, Rww) 

– The initial conditions are random variables too, with 

E[x(t0)] = 0, and E[x(t0)x T (t0)] = X0 

– Assume that a perfect measure of x(t) is available for feedback. 

•	 Given the noise in the system, need to modify our cost functions from 
before consider the average response of the closed-loop system ⇒� �	 � 

1	 1 tf 

Js	 = E x T (tf )Ptf x(tf ) + (x T (t)Rxx(t)x(t) + u T (t)Ruu(t)u(t))dt 
2	 2 t0 

– Average over all possible realizations of the disturbances. 

•	 Key observation: since w(t) is white, then by definition, the corre­
lation times-scales are very short compared to the system dynamics 
– Impossible to predict w(τ ) for τ > t, even with perfect knowledge 

of the state for τ ≤ t 

– Furthermore, by definition, the system state x(t) encapsulates all 
past information about the system 

– Then the optimal controller for this case is identical to the deter­

ministic one considered before. 
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Had the process noise w(t) had “color” (i.e., not white), then we need • 
to include a shaping filter that captures the spectral content (i.e., 
temporal correlation) of the noise Φ(s) 

– Previous picture: system is y = G(s)w1, with white noise input 

yw1 
� G(s) 

– New picture: system is y = G(s)w2, with shaped noise input


yw2 
� G(s) 

Account for the spectral content using a shaping filter H(s), so that • 
the picture now is of a system y = G(s)H(s)w1, with a white noise 
input 

G(s)H(s) ��� 
w1 w̃2 y 

– Then must design filter H(s) so that the output is a noise w̃2 that 
has the frequency content that we need 

•	 How design H(s)? Spectral Factorization – design a stable mini­

mum phase linear transfer function that replicates the desired spectrum 
of w2. 
– Basis of approach: If e2 = H(s)e1 and e1 is white, then the spec­

trum of e2 is given by 

Φe2(jω) = H(jω)H(−jω)Φe1(jω) 

where Φe1(jω) = 1 because it is white. 
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•	 Typically Φw2(jω) will be given as an expression in ω2, and we factor 
that into two parts, one of which is stable minimum phase, so if 

2σ2α2 

Φw2(jω) = 
ω2 + α2 √

2σα 
√

2σα 
=	

α + jω 
· 
α − jω 

= H(jω)H(−jω) 

√
2σα so clearly H(s) = s+α which we write in state space form as 

ẋH = −αxH + 
√

2ασw1 

w2 = xH 

•	 More generally, the shaping filter will be 

ẋH = AH xH + BH w1 

w2 = CH xH 

which we then augment to the plant dynamics, to get: � � �	 � � � � � � � 
ẋ A BwCH x Bu 0 

= + u + w1 ẋH 0 AH xH 0 BH � � x

y = Cy 0


xH 

where the noise input w1 is a white Gaussian noise. 

•	 Clearly this augmented system has the same form as the original system 
that we analyzed - there are just more states to capture the spectral 
content of the original shaped noise. 
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•	 Now consider the stochastic LQR problem for this case. 
– Modify the state weighting matrix so that 

Rxx 0 
R̃xx = 

0 0 

⇒ i.e. no weighting on the filter states – Why is that allowed? 

– Then, as before, the stochastic LQR solution for the augmented 
system is the same as the deterministic LQR solution (6–9) � � x 

u = − K Kd xH 

– So the full state feedback controller requires access to the state in 
the shaping filter, which is fictitious and needs to be estimated 

•	 Interesting result is that the gain K on the system states is com­
pletely independent of the properties of the disturbance 
– In fact, if the solution of the steady state Riccati equation in this 

case is partitioned as � � 

Paug = 
Pxx 

PxHx 

PxxH 

PxHxH 

it is easy to show that 
�	Pxx can be solved for independently, and 

� Is the same as it would be in the deterministic case with the dis­

turbances omitted 21 

– Of course the control inputs that are also based on xH will improve 
the performance of the system disturbance feedforward.⇒ 

21K+S pg 262 
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•	 Recall that the specific initial conditions do not effect the LQR con­

troller, but they do impact the cost-to-go from t0 

– Consider the stochastic LQR problem, but with w(t) ≡ 0 so that 
the only uncertainty is in the initial conditions 

– Have already shown that LQR cost can be written in terms of the 
solution of the Riccati equation (4–7): 

1 
JLQR = x T (t0)P (t0)x(t0)

2 �	 � 
1 

Js = E x T (t0)P (t0)x(t0)⇒	
2 

1	 � � 
= E trace[P (t0)x(t0)x T (t0)]

2 
1 

= trace[P (t0)X0]
2 

which gives expected cost-to-go with uncertain IC. 

•	 Now return to case with w �= 0 – consider the average performance 
of the stochastic LQR controller. 

•	 To do this, recognize that if we apply the LQR control, we have a 
system where the cost is based on zTRzzz = xTRxxx for the closed-

loop system: 

ẋ(t) = (A(t) − Bu(t)K(t))x(t) + Bw(t)w(t) 

z(t) = Cz(t)x(t) 

•	 This is of the form of a linear time-varying system driven by white 
Gaussian noise – called a Gauss-Markov Random process22 . 

22Bryson 11.4 
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• For a Gauss-Markov system we can predict the mean square value 
of the state X(t) = E[x(t)x(t)T ] over time using X(0) = X0 and 

Ẋ(t) = [A(t) − Bu(t)K(t)] X(t) + X(t) [A(t) − Bu(t)K(t)]T + BwRwwBw
T 

– Matrix differential Lyapunov Equation. 

•	 Can also extract the mean square control values using 

E[u(t)u(t)T ] = K(t)X(t)K(t)T 

•	 Now write performance evaluation as: 

1	 tf 

Js	 = E x T (tf )Ptf x(tf ) + (x T (t)Rxx(t)x(t) + u T (t)Ruu(t)u(t))dt 
2 � � t0 � �� 
1 tf 

= E trace Ptf x(tf )x T (tf ) + (Rxx(t)x(t)x T (t) + Ruu(t)u(t)u T (t))dt 
2	 t0 

1	 tf 

= trace Ptf X(tf ) + (Rxx(t)X(t) + Ruu(t)K(t)X(t)K(t)T )dt 
2	 t0 

•	 Not too useful in this form, but if P (t) is the solution of the LQR 
Riccati equation, then can show that the cost can be written as: 

1	 tf 

Js = trace P (t0)X(t0) + (P (t)BwRwwBw
T )dt 

2	 t0 

– First part, 1trace {P (t0)X(t0)} is the same cost-to-go from the 2

uncertain initial condition that we identified on 11–5 

– Second part shows that the cost increases as a result of the process 
noise acting on the system. 
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Sketch of Proof: first note that 
tf	 d 

P (t0)X(t0) − Ptf X(tf ) + (P (t)X(t))dt = 0 
dtt0 

1 
Js = trace Ptf X(tf ) + P (t0)X(t0) − Ptf X(tf )

2 �� � 
1	 tf 

+
2 
trace 

t0 

{Rxx(t)X(t) + Ruu(t)K(t)X(t)K(t)T }dt 

1	 tf 

+ trace {Ṗ (t)X(t) + P (t)Ẋ(t)}dt 
2 t0 

and (first reduces to standard CARE if K(t) = R−1BTP (t))uu u 

−Ṗ (t)X(t) = (A − BuK(t))TP (t)X(t) + P (t)(A − BuK(t))X(t) 

+RxxX(t) + K(t)TRuuK(t)X(t) 

P (t)Ẋ(t) =	 P (t)(A − BuK(t))X(t) + P (t)X(t)(A − BuK(t))T 

+P (t)BwRwwBw
T 

•	 Rearrange terms within the trace and then cancel terms to get final 
result. 
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•	 Problems exist if we set t0 = 0 and tf →∞ because performance will 
be infinite 
– Modify the cost to consider the time-average 

1 
Ja = lim Js 

tf →∞ tf − t0 

– No impact on necessary conditions since this is still a fixed end-time 
problem. 

– But now the initial conditions become irrelevant, and we only need 
focus on the integral part of the cost. 

•	 For LTI system with stationary process noise (constant Rww) and well-

posed time-invariant control problem (steady gain u(t) = −Kssx(t)) 
mean square value of state settles down to a constant 

lim X(t) = Xss 
tf →∞ 

0 = (A − BuKss) Xss + Xss (A − BuKss)
T + BwRwwBw

T 

– Can show that time-averaged mean square performance is 

1 �	 � 
Ja = trace [Rxx + KT RuuKss]Xss

2	 ss

1 ≡ 
2 
trace[PssBwRwwBw

T ] 

•	 Main point: this gives a direct path to computing the expected 
performance of a closed-loop system 
– Process noise enters into computation of Xss 
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•	 Consider a missile roll attitude control system with ω the roll angular 
velocity, δ the aileron deflection, Q the aileron effectiveness, and φ 
the roll angle, then 

δ̇ = u ω̇ = −
τ 
1 
ω + 

Q

τ 
δ + n(t) φ̇ = ω 

where n(t) is a noise input.

Then this can be written as:
• ⎡ ⎤ ⎡	 ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ 

δ̇ 0 0 0 δ 1 0
⎣ ω̇ ⎦ = ⎣ −1/τ Q/τ 0 ⎦⎣ ω ⎦ + ⎣ 0 ⎦ u + ⎣ 1 ⎦ n

φ̇ 0 1 0 φ 0 0


•	 Use τ = 1, Q = 10, Ruu = 1/(π)2 and ⎡	 ⎤ 
(π/12)2 0 0 

Rxx = ⎣ 0 0 0 ⎦ 

0 0 (π/180)2 

then solve LQR problem to get feedback gains: 
K=lqr(A,B,Rxx,Ruu) 
K = [26.9 29.0 180.0] 

•	 Then if n(t) has a spectral density of 1000 (deg/sec2)2 · sec 23 

•	 Find RMS response of the system from 
X=lyap(A-B*K,Bw*Rww*Bw’) ⎡	 ⎤ 

95 −42 −7 
X = ⎣ −42 73 0 ⎦ 

−7 0 0.87 

and that E[φ2] ≈ 0.93deg 

23Process noise input to a derivative of ω, so the units of n(t) must be deg/sec2 , but since E[n(t)n(τ )] = Rwwδ(t − τ ) and 
δ(t)dt = 1, then the units of δ(t) are 1/sec and thus the units of Rww are (rad/sec2)2 sec=rad2/sec3 · 
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•	 Goal: design an optimal controller for a system with incomplete 
and noisy measurements 

•	 Setup: for the system (possibly time-varying) 

ẋ = Ax + Buu + Bww 

z = Czx 

y = Cyx + v 

with 
– White, Gaussian noises w ∼ N (0, Rww) and v ∼ N (0, Rvv), with 
Rww > 0 and Rvv > 0 

– Initial conditions x(t0), a stochastic vector with E[x(t0)] = x̄0 and 
E[(x(t0) − x̄0)(x(t0) − x̄0)

T ] = Q0 so that 

x(t0) ∼ N(x̄0, Q0) 

Cost: 

1	 1 tf 

J = E x T (tf )Ptf x(tf ) + (z T (t)Rzzz(t) + u T (t)Ruuu(t))dt 
2	 2 t0 

with Rzz > 0, Ruu > 0, Ptf ≥ 0 

•	 Stochastic Optimal Output Feedback Problem: Find 

u(t) = f [y(τ ), t0 ≤ τ ≤ t] t0 ≤ t ≤ tf 

that minimizes J 

•	 The solution is the Linear Quadratic Gaussian Controller, which uses 
– LQE (10–15) to get optimal state estimates x̂(t) from y(t) using 

gain L(t) 

– LQR to get the optimal feedback control u(t) = −K(t)x 

– Separation principle to implement u(t) = −K(t)x̂(t) 
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•	 Regulator: u(t) = −K(t)x̂(t) 

K(t) = R−1BTP (t)uu u 

−Ṗ (t) = ATP (t) + P (t)A + Cz
TRzzCz − P (t)BuR

−1Bu
TP (t)uu 

P (tf )	 = Ptf 

Estimator from: • 

ẋ̂(t) = Ax̂ + Buu + L(t)(y(t) − Cyx̂(t)) 

where x̂(t0) = x̄0 and Q(t0) = Q0 

Q̇(t) = AQ(t) + Q(t)AT BT R−1 Q(t)+ BwRww w − Q(t)Cy
T 

vv Cy

L(t) = y vvQ(t)CTR−1 

•	 A compact form of the compensator is: 

ẋc = Acxc + Bcy 

u = −Ccxc 
with xc ≡ x̂ and


Ac = A − BuK(t) − L(t)Cy


Bc = L(t)


Cc = K(t)


•	 Valid for SISO and MIMO systems. Plant dynamics can also be time-

varying, but suppressed for simplicity. 
– Obviously compensator is constant if we use the steady state regu­

lator and estimator gains for an LTI system. 
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�
�
�

Spr 2008	 Infinite Horizon LQG 16.323 12–12 

•	 Assuming LTI plant 
•	 As with the stochastic LQR case, use time averaged cost 

– To ensure that estimator settles down, must take t0 → −∞ and 
tf	→∞, so that for any t, t0 � t � tf 

1
J̄	= lim J 

tf →∞ tf − t0 
t0→−∞ 

– Again, this changes the cost, but not the optimality conditions 

¯•	 Analysis of J shows that it can be evaluated as 

J̄ = E[z T (t)Rzzz(t) + u T (t)Ruuu(t)] 

=	 LT CT ]Tr[PssLssRvv ss + Qss z RzzCz

= Tr[PssBw BT KT ]Rww w + Qss ssRuuKss

where Pss and Qss are the steady state solutions of 

ATPss + PssA + CTRzzCz − PssBuR
−1BTPss = 0z uu u 

AQss AT + Bw BT CTR−1Cy = 0+ Qss Rww w − Qss y vv Qss 

with 
= R−1BT and	 CTR−1Kss uu u Pss Lss = Qss y vv 

•	 Can evaluate the steady state performance from the solution of 2 
Riccati equations 

¯– More complicated than stochastic LQR because J must account for 
performance degradation associated with estimation error. 

– Since in general x̂(t) = x(t), have two contributions to the cost 
�	Regulation error x = 0 

�	Estimation error x̃ = 0 
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Note that • 

J̄ = Tr[PssLssRvvL
T
ss + QssCz

TRzzCz] 

BT KT =	 Tr[PssBwRww w + Qss ssRuuKss] 

both of which contain terms that are functions of the control and 
estimation problems. 

•	 To see how both terms contribute, let the regulator get very fast 
Ruu 0. A full analysis requires that we then determine what ⇒ →	

¯happens to Pss and thus J . But what is clear is that: 

lim J̄ ≥ Tr[QssCz
TRzzCz] 

Ruu→0 

which is independent of Ruu 

– Thus even in the limit of no control penalty, the performance is 
lower bounded by term associated with estimation error Qss. 

Similarly, can see that limRvv→0 J̄ ≥ Tr[PssBwRwwB
T ] which is re­•	 w 

lated to the regulation error and provides a lower bound on the per­

formance with a fast estimator 
– Note that this is the average cost for the stochastic LQR problem. 

Both cases illustrate that it is futile to make either the estimator or • 
regulator much “faster” than the other 

– The ultimate performance is limited, and you quickly reach the 
“knee in the curve” for which further increases in the authority of 
one over the other provide diminishing returns. 

– Also suggests that it is not obvious that either one of them should 
be faster than the other. 

•	 Rule of Thumb: for given Rzz and Rww, select Ruu and Rvv so that 
the performance contributions due to the estimation and regulation 
error are comparable. 
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•	 Now consider what happens when the control u = −Kx is changed 
to the new control u = −Kx̂ (same K). 
– Assume steady state values here, but not needed. 

– Previous looks at this would have analyzed the closed-loop stability, 
as follows, but we also want to analyze performance. 

plant :	 ẋ = Ax + Buu + Bww 

z = Czx 

y = Cyx + v 

compensator : ẋc = Acxc + Bcy 

u = −Ccxc 

•	 Which give the closed-loop dynamics � � � � � � � � � � 
ẋ 
ẋc 

= 

� 
A −BuCc 

BcCy Ac � � 
x 
� 

x 
xc 

+ 
Bw 

0 
0 
Bc 

w 
v 

z = Cz 0 

� xc � � 
x 
� 

y = Cy 0 
xc 

+ v 

•	 It is not obvious that this system will even be stable: λi(Acl) < 0? 
– To analyze, introduce n = x − xc, and the similarity transform 

T	 = 
I 0

= T −1 x 
= T 

x 
I	 −I ⇒ 

n xc 

so that Acl ⇒ TAclT −1 ≡ Acl and when you work through the 
math, you get 

Acl = 
A − BuK BuK 

0 A − LCy 
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• Absolutely key points: 
1. λi(Acl) ≡ λi(Acl) 
2. Acl is block upper triangular, so can find poles by inspection: 

det(sI − Acl) = det(sI − (A − BuK)) det(sI − (A − LCy))· 

The closed-loop poles of the system consist of the 
union of the regulator and estimator poles 

– This shows that we can design any estimator and regulator sepa­

rately with confidence that the combination will stabilize the system. 
� Also means that the LQR/LQE problems decouple in terms of 

being able to predict the stability of the overall closed-loop system. 

• Let Gc(s) be the compensator transfer function (matrix) where 

u = −Cc(sI − Ac)
−1Bcy = −Gc(s)y 

– Reason for this is that when implementing the controller, we often 
do not just feedback −y(t), but instead have to include a reference 
command r(t) 

– Use servo approach and feed back e(t) = r(t) − y(t) instead 

r 
��
e 

�� Gc(s) 
u 

�� G(s) 
y 

��

− 

��

– So now u = Gce = Gc(r−y), and if r = 0, then have u = Gc(−y) 

• Important points: 
– Closed-loop system will be stable, but the compensator dynamics 

need not be. 
– Often very simple and useful to provide classical interpretations of 

the compensator dynamics Gc(s). 
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•	 Performance optimality of this strategy is a little harder to establish 
– Now saying more than just that the separation principle is a “good” 

idea are trying to say that it is the “best” possible solution ⇒ 

•	 Approach: 
– Rewrite cost and system in terms of the estimator states and dy­

namics recall we have access to these ⇒ 

– Design a stochastic LQR for this revised system full state feed­⇒ 
back on x̂(t) 

•	 Start with the cost (use a similar process for the terminal cost) 

E[z TRzzz] = E[x TRxxx] {±x̂} 

= E[(x − x̂ + x̂)TRxx(x − x̂ + x̂)] {x̃ = x − x̂} 

= E[x̃TRxxx̃] + 2E[x̃TRxxx̂] + E[x̂TRxxx̂] 

•	 Note that x̂(t) is the minimum mean square estimate of x(t) given 
y(τ ), u(τ ), t0 ≤ τ ≤ t. 
– Key property of that estimate is that x̂ and x̃ are uncorrelated24 

E[x̃TRxxx̂] = trace[E{x̃x̂T }Rxx] = 0 

•	 Also, 

E[x̃TRxxx̃] = E[trace(Rxxx̃x̃T )] = trace(RxxQ) 

where Q is the solution of the LQE Riccati equation (11–11) 

•	 So, in summary we have: 

E[x TRxxx] = trace(RxxQ) + E[x̂TRxxx̂] 

24Gelb, pg 112 
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• Now the main part of the cost function can be rewritten as 

1 tf 

J = E (z T (t)Rzzz(t) + u T (t)Ruuu(t))dt 
2 t0 

1 tf 

= E (x̂T (t)Rxxx̂(t) + u T (t)Ruuu(t))dt 
2 t0 

1 tf 

+ (trace(RxxQ))dt 
2 t0 

– The last term is independent of the control u(t) it is only a ⇒ 
function of the estimation error 

– Objective now is to choose the control u(t) to minimize the first 
term 

• But first we need another key fact25: If the optimal estimator is 

ẋ̂(t) = Ax̂(t) + Buu(t) + L(t)(y(t) − Cyx̂(t)) 

then by definition, the innovations process 

i(t) ≡ y(t) − Cyx̂(t) 

is a white Gaussian process, so that i(t) ∼ N (0, Rvv + CyQCT )y 

Then we can rewrite the estimator as • 

ẋ̂(t) = Ax̂(t) + Buu(t) + L(t)i(t) 

which is an LTI system with i(t) acting as the process noise through 
a computable L(t). 

25Gelb, pg 317 
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• So combining the above, we must pick u(t) to minimize 

1 tf 

J = E (x̂T (t)Rxxx̂(t) + u T (t)Ruuu(t))dt +term ind. of u(t)
2 t0 

subject to the dynamics 

ẋ̂(t) = Ax̂(t) + Buu(t) + L(t)i(t) 

– Which is a strange looking Stochastic LQR problem 

– As we saw before, the solution is independent of the driving process 
noise 

u(t) = −K(t)x̂(t) 

– Where K(t) is found from the LQR with the data A, Bu, Rxx, and 
Ruu, and thus will be identical to the original problem. 

• Combination of LQE/LQR gives performance optimal result. 
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� 
0 1 

� � 
0 
� � 

0 
� 

ẋ = x + u + w 
0 0 1 1 

1 0 
z = x 

0 1 

y	 = 1 0 x + v 

where in the LQG problem we have 

1 0 
Rzz = Ruu = 1 Rvv = 1 Rww = 1 

0 1 

•	 Solve the SS LQG problem to find that 

Tr[PssLssRvvL
T
ss] = 8.0 Tr[QssCz

TRzzCz] = 2.8


BT KT
Tr[PssBwRww w ] = 1.7 Tr[Qss ssRuuKss] = 9.1 

•	 Suggests to me that we need to improve the estimation error ⇒ that 
Rvv is too large. Repeat with 

1 0 
Rzz = Ruu = 1 Rvv = 0.1 Rww = 1 

0 1 

Tr[PssLssRvvL
T
ss] = 4.1 Tr[QssCz

TRzzCz] = 1.0


BT KT
Tr[PssBwRww w ] = 1.7 Tr[Qss ssRuuKss] = 3.7 

and 

1	 0 
Rzz = Ruu = 1 Rvv = 0.01 Rww = 1 

0 1 

Tr[PssLssRvvLss
T ] = 3.0 Tr[QssCz

TRzzCz] = 0.5 

BT KTTr[PssBwRww w ] = 1.7 Tr[Qss ssRuuKss] = 1.7 
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• LQG analysis code 
A=[0 1;0 0];%

Bu=[0 1]’;%

Bw=[0 1]’; %

Cy=[1 0];%

Cz=[1 0;0 1];%

Rww=1;%

Rvv=1;%

Rzz=diag([1 1]);%

Ruu=1;%

[K,P]=lqr(A,Bu,Cz*Rzz*Cz’,Ruu);%

[L,Q]=lqr(A’,Cy’,Bw*Rww*Bw’,Rvv);L=L’;%

N1=trace(P*(L*Rvv*L’))%

N2=trace(Q*(Cz’*Rzz*Cz))%

N3=trace(P*(Bw*Rww*Bw’))%

N4=trace(Q*(K’*Ruu*K))%

[N1 N2;N3 N4]
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• Consider the linearized longitudinal dynamics of a hypothetical heli­

copter. The model of the helicopter requires four state variables: 
– θ(t):fuselage pitch angle (radians) 
– q(t):pitch rate (radians/second) 
– u(t):horizontal velocity of CG (meters/second) 
– x(t):horizontal distance of CG from desired hover (meters)

The control variable is:

– δ (t): tilt angle of rotor thrust vector (radians) 

Figure 12.1: Helicopter in Hover 

• The linearized equation of motion are: 

θ̇(t) = q(t)


q̇(t) = −0.415q(t) − 0.011u(t) + 6.27δ(t) − 0.011w(t)


u̇(t) = 9.8θ(t) − 1.43q(t) − .0198u(t) + 9.8δ(t) − 0.0198w(t)


ẋ(t) = u(t)


– w(t) represents a horizontal wind disturbance 

– Model w(t) as the output of a first order system driven by zero 
mean, continuous time, unit intensity Gaussian white noise ξ(t): 

ẇ(t) = −0.2w(t) + 6ξ(t) 

June 18, 2008 

Figure by MIT OpenCourseWare.
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•	 First, treat original (non-augmented) plant dynamics. 
– Design LQR controller so that an initial hover position error, x(0) = 

1 m is reduced to zero (to within 5%) in approximately 4 sec. 

Figure 12.2: Results show that Ruu = 5 gives reasonable performance. 

•	 Augment the noise model, and using the same control gains, form the 
closed-loop system which includes the wind disturbance w(t) as part 
of the state vector. 

•	 Solve necessary Lyapunov equations to determine the (steady-state) 
variance of the position hover error, x(t) and rotor angle δ(t). 
– Without feedforward: 

E[x2] = 0.048 E[δ2] = 0.017 

•	 Then design a LQR for the augmented system and repeat the process. 
– With feedforward: 

E[x2] = 0.0019 E[δ2] = 0.0168 

June 18, 2008 
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• Now do stochastic simulation of closed-loop system using Δt = 0.1. 

– Note the subtly here that the design was for a continuous system, 
but the simulation will be discrete 

– Are assuming that the integration step is constant. 

– Need to create ζ using the randn function, which gives zero mean 
unit variance Gaussian noise. 

– To scale it correctly for a discrete simulation, multiply the output 
of randn by 1/

√
Δt, where Δt is the integration step size.26 

– Could also just convert the entire system to its discrete time equiv­

alent, and then use a process noise that has a covariance 

Qd = Rww/Δt 

26Franklin and Powell, Digital Control of Dynamic Systems 

June 18, 2008 
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Figure 12.3: Stochastic Simulations with and without disturbance feedforward. 

June 18, 2008 
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Helicopter stochastic simulation


% 16.323 Spring 2008

% Stochastic Simulation of Helicopter LQR

% Jon How

%

clear all, clf, randn(’seed’,sum(100*clock));

% linearized dynamics of the system

A = [ 0 1 0 0; 0 -0.415 -0.011 0;9.8 -1.43 -0.0198 0;0 0 1 0];

Bw = [0 -0.011 -0.0198 0]’;

Bu = [0 6.27 9.8 0]’;

Cz = [0 0 0 1];

Rxx = Cz’*Cz;

rho = 5;

Rww=1;


% lqr control

[K,S,E]=lqr(A,Bu,Rxx,rho);

[K2,S,E]=lqr(A,Bu,Rxx,10*rho);

[K3,S,E]=lqr(A,Bu,Rxx,rho/10);


% initial response with given x0

x0 = [0 0 0 1]’;

Ts=0.1; % small discrete step to simulate the cts dynamics

tf=8;t=0:Ts:tf;

[y,x] = initial(A-Bu*K,zeros(4,1),Cz,0,x0,t);

[y2,x2] = initial(A-Bu*K2,zeros(4,1),Cz,0,x0,t);

[y3,x3] = initial(A-Bu*K3,zeros(4,1),Cz,0,x0,t);

subplot(211), plot(t,[y y2 y3],[0 8],.05*[1 1],’:’,[0 8],.05*[-1 -1],’:’,’LineWidth’,2)

ylabel(’x’);title(’Initial response of the closed loop system with x(0) = 1’)

h = legend([’LQR: \rho = ’,num2str(rho)],[’LQR: \rho = ’,num2str(rho*10)],[’LQR: \rho = ’,num2str(rho/10)]);

axes(h)

subplot(212), plot(t,[(K*x’)’ (K2*x2’)’ (K3*x3’)’],’LineWidth’,2);grid on

xlabel(’Time’), ylabel(’\delta’)

print -r300 -dpng heli1.png


% shaping filter

Ah=-0.2;Bh=6;Ch=1;

% augment the filter dyanmics

Aa = [A Bw*Ch; zeros(1,4) Ah];

Bua = [Bu;0];

Bwa = [zeros(4,1); Bh];

Cza = [Cz 0];

Ka = [K 0]; % i.e. no dist FF

Acla = Aa-Bua*Ka; % close the loop using NO dist FF

Pass = lyap(Acla,Bwa*Rww*Bwa’); % compute SS response to the dist

vx = Cza*Pass*Cza’; % state resp

vd = Ka*Pass*Ka’; % control resp


zeta = sqrt(Rww/Ts)*randn(length(t),1); % discrete equivalent noise

[y,x] = lsim(Acla,Bwa,Cza,0,zeta,t,[x0;0]); % cts closed-loop sim

%

% second simulation approach: discrete time

%

Fa=c2d(ss(Acla,Bwa,Cza,0),Ts); % discretize the closed-loop dynamics

[dy,dx] = lsim(Fa,zeta,[],[x0;0]); % stochastic sim in discrete time

u = Ka*x’; % find control commands given the state response


% disturbance FF

[KK,SS,EE]=lqr(Aa,Bua,Cza’*Cza,rho); % now K will have dist FF

Acl=Aa-Bua*KK;

PP=lyap(Acl,Bwa*Rww*Bwa’);

vxa = Cza*PP*Cza’;

vda = KK*PP*KK’;

[ya,xa] = lsim(Acl,Bwa,Cza,0,zeta,t,[x0;0]); % cts sim

F=c2d(ss(Acl,Bwa,Cza,0),Ts); % discretize the closed-loop dynamics

[dya,dxa] = lsim(F,zeta,[],[x0;0]); % stochastic sim in discrete time

ua = KK*xa’; % find control commands given the state response
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68 figure(2);

69 subplot(211)

70 plot(t,y,’LineWidth’,2)

71 hold on;

72 plot(t,dy,’r-.’,’LineWidth’,1.5)

73 plot([0 max(t)],sqrt(vx)*[1 1],’m--’,[0 max(t)],-sqrt(vx)*[1 1],’m--’,’LineWidth’,1.5);

74 hold off

75 xlabel(’Time’);ylabel(’y(t)’);legend(’cts’,’disc’)

76 title(’Stochastic Simulation of Helicopter Response: No FF’)

77 subplot(212)

78 plot(t,u,’LineWidth’,2)

79 xlabel(’Time’);ylabel(’u(t)’);legend(’No FF’)

80 hold on;

81 plot([0 max(t)],sqrt(vd)*[1 1],’m--’,[0 max(t)],-sqrt(vd)*[1 1],’m--’,’LineWidth’,1.5);

82 hold off

83


84 figure(3);

85 subplot(211)

86 plot(t,ya,’LineWidth’,2)

87 hold on;

88 plot(t,dya,’r-.’,’LineWidth’,1.5)

89 plot([0 max(t)],sqrt(vxa)*[1 1],’m--’,[0 max(t)],-sqrt(vxa)*[1 1],’m--’,’LineWidth’,1.5);

90 hold off

91 xlabel(’Time’);ylabel(’y(t)’);legend(’cts’,’disc’)

92 title(’Stochastic Simulation of Helicopter Response: with FF’)

93 subplot(212)

94 plot(t,ua,’LineWidth’,2)

95 xlabel(’Time’);ylabel(’u(t)’);legend(’with FF’)

96 hold on;

97 plot([0 max(t)],sqrt(vda)*[1 1],’m--’,[0 max(t)],-sqrt(vda)*[1 1],’m--’,’LineWidth’,1.5);

98 hold off

99


100 print -f2 -r300 -dpng heli2.png 
101 print -f3 -r300 -dpng heli3.png 
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•	 Now consider what happens if we reduce the measurable states and 
use LQG for the helicopter control/simulation 

•	 Consider full vehicle state measurement (i.e., not the disturbance 
state) 

Cy = [ I4 0 ] 

•	 Consider only partial vehicle state measurement 

0	 1 0 0 0 
Cy	 = 

0	 0 0 1 0 

•	 Set Rvv small. 

June 18, 2008 
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Figure 12.4: LQR with disturbance feedforward compared to LQG 
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Figure 12.5: Second LQR with disturbance feedforward compared to LQG 
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Helicopter LQG


% 16.323 Spring 2008

% Stochastic Simulation of Helicopter LQR - from Bryson’s Book

% Jon How

%

clear all, clf, randn(’seed’,sum(100*clock));

set(0,’DefaultAxesFontName’,’arial’)

set(0,’DefaultAxesFontSize’,12)

set(0,’DefaultTextFontName’,’arial’)

% linearized dynamics of the system state=[theta q dotx x]

A = [ 0 1 0 0; 0 -0.415 -0.011 0;9.8 -1.43 -0.0198 0;0 0 1 0];

Bw = [0 -0.011 -0.0198 0]’;

Bu = [0 6.27 9.8 0]’;

Cz = [0 0 0 1];

Rxx = Cz’*Cz; Rww=1;

rho = 5;

% lqr control

[K,S,E]=lqr(A,Bu,Rxx,rho);


% initial response with given x0

x0 = [0 0 0 1]’;

Ts=0.01; % small discrete step to simulate the cts dynamics

tf=20;t=0:Ts:tf;nt=length(t);

% Now consider shaped noise with shaping filter

Ah=-0.2;Bh=6;Ch=1;

% augment the filter dyanmics

Aa = [A Bw*Ch; zeros(1,4) Ah];

Bua = [Bu;0];

Bwa = [zeros(4,1); Bh];

Cza = [Cz 0];

x0a=[x0;0];

%zeta = Rww/sqrt(Ts)*randn(length(t),1); % discrete equivalent noise

zeta = sqrt(Rww/Ts)*randn(length(t),1); % discrete equivalent noise


%%%% Now consider disturbance FF

[KK,SS,EE]=lqr(Aa,Bua,Cza’*Cza,rho); % now K will have dist FF

Acl=Aa-Bua*KK;

PP=lyap(Acl,Bwa*Rww*Bwa’);

vxa = Cza*PP*Cza’; %state

vda = KK*PP*KK’; %control

%

[ya,xa] = lsim(Acl,Bwa,Cza,0,zeta,t,x0a); % cts sim

F=c2d(ss(Acl,Bwa,Cza,0),Ts); % discretize the closed-loop dynamics

[dya,dxa] = lsim(F,zeta,[],x0a); % stochastic sim in discrete time

ua = KK*xa’; % find control commands given the state response


%%%% Now consider Output Feedback Case

% Assume that we can only measure the system states

% and not the dist one

FULL=1;

if FULL


Cya=eye(4,5); % full veh state 
else


Cy=[0 1 0 0;0 0 0 1]; % only meas some states

Cya=[Cy [0;0]];


end

Ncy=size(Cya,1);Rvv=(1e-2)^2*eye(Ncy);

[L,Q,FF]=lqr(Aa’,Cya’,Bwa*Rww*Bwa’,Rvv);L=L’;% LQE calc

%closed loop dyn

Acl_lqg=[Aa -Bua*KK;L*Cya Aa-Bua*KK-L*Cya];

Bcl_lqg=[Bwa zeros(5,Ncy);zeros(5,1) L];

Ccl_lqg=[Cza zeros(1,5)];Dcl_lqg=zeros(1,1+Ncy);

x0_lqg=[x0a;zeros(5,1)];

zeta_lqg=zeta;

% now just treat this as a system with more sensor noise acting as more

% process noise

for ii=1:Ncy


zeta_lqg = [zeta_lqg sqrt(Rvv(ii,ii)/Ts)*randn(nt,1)];% discrete equivalent noise 
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68 end

69 [ya_lqg,xa_lqg] = lsim(Acl_lqg,Bcl_lqg,Ccl_lqg,Dcl_lqg,zeta_lqg,t,x0_lqg); % cts sim

70 F_lqg=c2d(ss(Acl_lqg,Bcl_lqg,Ccl_lqg,Dcl_lqg),Ts); % discretize the closed-loop dynamics

71 [dya_lqg,dxa_lqg] = lsim(F_lqg,zeta_lqg,[],x0_lqg); % stochastic sim in discrete time

72 ua_lqg = [zeros(1,5) KK]*xa_lqg’; % find control commands given the state estimate

73


74 %LQG State Perf Prediction

75 X_lqg=lyap(Acl_lqg,Bcl_lqg*[Rww zeros(1,Ncy);zeros(Ncy,1) Rvv]*Bcl_lqg’);

76 vx_lqg=Ccl_lqg*X_lqg*Ccl_lqg’;

77 vu_lqg=[zeros(1,5) KK]*X_lqg*[zeros(1,5) KK]’;

78


79 figure(3);clf

80 subplot(211)

81 plot(t,ya,’LineWidth’,3)

82 hold on;

83 plot(t,dya,’r-.’,’LineWidth’,2)

84 plot([0 max(t)],sqrt(vxa)*[1 1],’m--’,[0 max(t)],-sqrt(vxa)*[1 1],’m--’,’LineWidth’,1);

85 hold off

86 xlabel(’Time’);ylabel(’y(t)’);legend(’cts’,’disc’)

87 title(’Stochastic Simulation of Helicopter Response: with FF’)

88 subplot(212)

89 plot(t,ua,’LineWidth’,2)

90 xlabel(’Time’);ylabel(’u(t)’);legend(’with FF’)

91 hold on;

92 plot([0 max(t)],sqrt(vda)*[1 1],’m--’,[0 max(t)],-sqrt(vda)*[1 1],’m--’,’LineWidth’,1);

93 axis([0 tf -0.2 .6])

94 hold off

95 print -f3 -r300 -dpng heli_lqg_1.png;

96


97 figure(4);clf

98 subplot(211)

99 plot(t,ya_lqg,’LineWidth’,3)


100 hold on; 
101 plot(t,dya_lqg,’r-.’,’LineWidth’,2) 
102 plot([0 max(t)],sqrt(vx_lqg)*[1 1],’m--’,[0 max(t)],-sqrt(vx_lqg)*[1 1],’m--’,’LineWidth’,1); 
103 hold off 
104 xlabel(’Time’);ylabel(’y(t)’);legend(’cts’,’disc’) 
105 title([’Stochastic Simulation of Helicopter Response: LQG R_{v v} = ’,num2str(Rvv(1,1))]) 
106 subplot(212) 
107 plot(t,ua_lqg,’LineWidth’,2) 
108 xlabel(’Time’);ylabel(’u(t)’);%legend(’with FF’) 
109 if FULL 
110 legend(’Full veh state’) 
111 else 
112 legend(’Pitch rate, Horiz Pos’) 
113 end 
114 hold on; 
115 plot([0 max(t)],sqrt(vu_lqg)*[1 1],’m--’,[0 max(t)],-sqrt(vu_lqg)*[1 1],’m--’,’LineWidth’,1); 
116 axis([0 tf -0.2 .6]) 
117 hold off 
118 if FULL 
119 print -f4 -r300 -dpng heli_lqg_2.png; 
120 else 
121 print -f4 -r300 -dpng heli_lqg_3.png; 
122 end 
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•	 Bryson, page 209 Consider the stabilization of a 747 at 40,000 ft 
and Mach number of 0.80. The perturbation dynamics from elevator 
angle to pitch angle are given by 

θ(s) 1.16(s + 0.0113)(s + 0.295) 
δe(s)

= G(s) = 
[s2 + (0.0676)2][(s + 0.375)2 + (0.882)2] 

1. Note that these aircraft dynamics can be stabilized with a simple 
lead compensator 

δe(s) s + 0.6 
= 3.50 

θ(s) s + 3.6 

2. Can also design an LQG controller for this system by assuming that 
Bw = Bu and Cz = Cy, and then tuning Ruu and Rvv to get a 
reasonably balanced performance. 
– Took Rww = 0.1 and tuned Rvv 
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Figure 12.6: B747: Compensators 
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the overall compensator gain) 
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3. Compare the Bode plots of the lead compensator and LQG designs 
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Figure 12.8: B747: Compensators and loop TF
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4. Consider the closed-loop TF for the system 

10
−3

10
−2

10
−1

10
0

10
1

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Freq (rad/sec)

 

 

G
Gcl

lead

Gcl
lqg

Figure 12.9: B747: closed-loop TF 

5. Compare impulse response of two closed-loop systems. 
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Figure 12.10: B747: Impulse response 

6. So while LQG controllers might appear to be glamorous, they are 
actually quite ordinary for SISO systems. 
– Where they really shine is that it this simple to design a MIMO 

controller. 
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B747 LQG


% 16.323 B747 example

% Jon How, MIT, Spring 2007

%

clear all

set(0,’DefaultAxesFontName’,’arial’)

set(0,’DefaultAxesFontSize’,12)

set(0,’DefaultTextFontName’,’arial’)


gn=1.16*conv([1 .0113],[1 .295]);

gd=conv([1 0 .0676^2],[1 2*.375 .375^2+.882^2]);

% lead comp given

kn=3.5*[1 .6];kd=[1 3.6];


f=logspace(-3,1,300);

g=freqresp(gn,gd,2*pi*f*sqrt(-1));


[nc,dc]=cloop(conv(gn,kn),conv(gd,kd)); % CLP with lead

gc=freqresp(nc,dc,2*pi*f*sqrt(-1)); % CLP with lead

%roots(dc)

%loglog(f,abs([g gc]))


%get state space model

[a,b,c,d]=tf2ss(gn,gd);

% assume that Bu and Bw are the same

% take y=z

Rzz=1;Ruu=0.01;Rww=0.1;Rvv=0.01;

[k,P,e1] = lqr(a,b,c’*Rzz*c,Ruu);

[l,Q,e2] = lqe(a,b,c,Rww,Rvv);

[ac,bc,cc,tdc] = reg(a,b,c,d,k,l);

[knl,kdl]=ss2tf(ac,bc,cc,tdc);

N1=trace(P*(l*Rvv*l’))%

N2=trace(Q*(c’*Rzz*c))%

N3=trace(P*(b*Rww*b’))%

N4=trace(Q*(k’*Ruu*k))%

N=[N1 N2 N1+N2;N3 N4 N3+N4]


[ncl,dcl]=cloop(conv(gn,knl),conv(gd,kdl)); % CLP with lqg

gcl=freqresp(ncl,dcl,2*pi*f*sqrt(-1)); % CLP with lqg

[[roots(dc);0;0;0] roots(dcl)]

figure(2);clf;

loglog(f,abs([g gc gcl])) % mag plot of closed loop system

setlines(2)

legend(’G’,’Gcl_{lead}’,’Gcl_{lqg}’)

xlabel(’Freq (rad/sec)’)


Gclead=freqresp(kn,kd,2*pi*f*sqrt(-1));

Gclqg=freqresp(knl,kdl,2*pi*f*sqrt(-1));


figure(3);clf;

subplot(211)

loglog(f,abs([g Gclead Gclqg])) % Bode of compesantors

setlines(2)

legend(’G’,’Gc_{lead}’,’Gc_{lqg}’)

xlabel(’Freq (rad/sec)’)

axis([1e-3 10 1e-2 1e2])

subplot(212)

semilogx(f,180/pi*unwrap(phase([g])));hold on

semilogx(f,180/pi*unwrap(phase([Gclead])),’g’)

semilogx(f,180/pi*unwrap(phase([Gclqg])),’r’)

xlabel(’Freq (rad/sec)’)

hold off

setlines(2)

legend(’G’,’Gc_{lead}’,’Gc_{lqg}’)


figure(6);clf;

subplot(211)

loglog(f,abs([g g.*Gclead g.*Gclqg])) % Bode of Loop transfer function
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68 setlines(2)

69 legend(’G’,’Loop_{lead}’,’Loop_{lqg}’)

70 xlabel(’Freq (rad/sec)’)

71 axis([1e-3 10 1e-2 1e2])

72 subplot(212)

73 semilogx(f,180/pi*unwrap(phase([g])));hold on

74 semilogx(f,180/pi*unwrap(phase([g.*Gclead])),’g’)

75 semilogx(f,180/pi*unwrap(phase([g.*Gclqg])),’r’)

76 xlabel(’Freq (rad/sec)’)

77 hold off

78 setlines(2)

79 legend(’G’,’Loop_{lead}’,’Loop_{lqg}’)

80


81 % RL of 2 closed-loop systems

82 figure(1);clf;rlocus(conv(gn,kn),conv(gd,kd));axis(2*[-2.4 0.1 -0.1 2.4])

83 hold on;plot(roots(dc)+sqrt(-1)*eps,’md’,’MarkerFaceColor’,’m’);hold off

84 title(’RL of B747 system with the given Lead Comp’)

85 figure(4);clf;rlocus(conv(gn,knl),conv(gd,kdl));axis(2*[-2.4 0.1 -0.1 2.4])

86 hold on;plot(roots(dcl)+sqrt(-1)*eps,’md’,’MarkerFaceColor’,’m’);hold off

87 title(’RL of B747 system with the LQG Comp’)

88


89 % time simulations

90 Ts=0.01;

91 [y1,x,t]=impulse(gn,gd,[0:Ts:10]);

92 [y2]=impulse(nc,dc,t);

93 [y3]=impulse(ncl,dcl,t);

94 [ulead]=lsim(kn,kd,y2,t); % noise free sim

95 [ulqg]=lsim(knl,kdl,y3,t); % noise free sim

96


97 figure(5);clf;

98 subplot(211)

99 plot(t,[y1 y2 y3])


100 xlabel(’Time’) 
101 ylabel(’y(t)’) 
102 setlines(2) 
103 legend(’G’,’Gcl_{lead}’,’Gcl_{lqg}’) 
104 subplot(212) 
105 plot(t,[ulead ulqg]) 
106 xlabel(’Time’) 
107 ylabel(’u(t)’) 
108 setlines(2) 
109 legend(’Gc_{lead}’,’Gc_{lqg}’) 
110 

111 figure(7) 
112 pzmap(tf(kn,kd),’g’,tf(knl,kdl),’r’) 
113 legend(’lead’,’LQG’) 
114 

115 print -depsc -f1 b747_1.eps;jpdf(’b747_1’) 
116 print -depsc -f2 b747_2.eps;jpdf(’b747_2’) 
117 print -depsc -f3 b747_3.eps;jpdf(’b747_3’) 
118 print -depsc -f4 b747_4.eps;jpdf(’b747_4’) 
119 print -depsc -f5 b747_5.eps;jpdf(’b747_5’) 
120 print -depsc -f6 b747_6.eps;jpdf(’b747_6’) 
121 print -depsc -f7 b747_7.eps;jpdf(’b747_7’) 
122 
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