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16.323 Lecture 12

Stochastic Optimal Control

e Kwaknernaak and Sivan Chapter 3.6, 5
e Bryson Chapter 14
e Stengel Chapter 5
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Stochastic Optimal Control

e Goal: design optimal compensators for systems with incomplete and
noisy measurements

— Consider this first simplified step: assume that we have noisy system
with perfect measurement of the state.

e System dynamics:
x(t) = A(t)x(t) + Bu(t)u(t) + By,(t)w(t)

— Assume that w(t) is a white Gaussian noise ? = N(0, Ryy)

— The initial conditions are random variables too, with
E[X(to)] = O, and E[X(to)XT(to)] = XO

— Assume that a perfect measure of x(¢) is available for feedback.

e Given the noise in the system, need to modify our cost functions from
before = consider the average response of the closed-loop system

J,=F {%XT(tf)Pt X(tr) + % /t f(XT(t)RXX(t)X(t) + uT(t)Ruu(t)u(t))dt}

0

— Average over all possible realizations of the disturbances.

e Key observation: since w(t) is white, then by definition, the corre-
lation times-scales are very short compared to the system dynamics
— Impossible to predict w(7) for 7 > ¢, even with perfect knowledge
of the state for 7 < ¢

— Furthermore, by definition, the system state x(t) encapsulates all
past information about the system

— Then the optimal controller for this case is identical to the deter-
ministic one considered before.
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Spectral Factorization

e Had the process noise w(t) had “color” (i.e., not white), then we need
to include a shaping filter that captures the spectral content (i.e.,
temporal correlation) of the noise ®(s)

— Previous picture: system is y = G(s)wy, with white noise input

W1 y

| G(s)

— New picture: system is y = G(s)ws, with shaped noise input

W2 y

| G(s)

e Account for the spectral content using a shaping filter H(s), so that
the picture now is of a system y = G(s)H (s)wq, with a white noise
input

M) 2 6

— Then must design filter H(s) so that the output is a noise W that
has the frequency content that we need

e How design H(s)? Spectral Factorization — design a stable mini-
mum phase linear transfer function that replicates the desired spectrum
of wo.

— Basis of approach: If e; = H(s)e; and ey is white, then the spec-
trum of ey is given by

D, (juw) = H(jw)H(—juw)®,, (jw)

where @, (jw) = 1 because it is white.

June 18, 2008
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e Typically ®,,(jw) will be given as an expression in w?, and we factor
that into two parts, one of which is stable minimum phase, so if

20202

w? 4+ a2
V2oa V20«

_  H{NH
A (Jw)H(—jw)

(Dwz(]w) =

so clearly H(s) = % which we write in state space form as
Ty = —oaxg+ \/écwwl
Wy = Ty

e More generally, the shaping filter will be

XH = AHXH—’—BHWl

Wy = CHXH

which we then augment to the plant dynamics, to get:

B P | S I R P

0 Ay
SEIE

XH

where the noise input wy is a white Gaussian noise.

e Clearly this augmented system has the same form as the original system
that we analyzed - there are just more states to capture the spectral
content of the original shaped noise.
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e Now consider the stochastic LQR problem for this case.

— Modify the state weighting matrix so that
R« O
0 0

RXX -

=> i.e. no weighting on the filter states — Why is that allowed?

— Then, as before, the stochastic LQR solution for the augmented
system is the same as the deterministic LQR solution (6-9)

u=—[K K] [X’;]

— So the full state feedback controller requires access to the state in
the shaping filter, which is fictitious and needs to be estimated

e Interesting result is that the gain K on the system states is com-
pletely independent of the properties of the disturbance
— In fact, if the solution of the steady state Riccati equation in this
case is partitioned as

[ P« | P
Paug a [ PXHX ‘ PXHfH ]

it is easy to show that
< Py can be solved for independently, and

& Is the same as it would be in the deterministic case with the dis-
turbances omitted 2!

— Of course the control inputs that are also based on x5 will improve
the performance of the system = disturbance feedforward.

21K +S pg 262
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e Recall that the specific initial conditions do not effect the LQR con-
troller, but they do impact the cost-to-go from ¢

— Consider the stochastic LQR problem, but with w(¢) = 0 so that
the only uncertainty is in the initial conditions

— Have already shown that LQR cost can be written in terms of the
solution of the Riccati equation (4-7):

Tron — %XT(tO)P(tO)X(tO)

~J. = E {%XT(tO)P(tO)X(tO)}
1

= §E {trace[P(ty)x(to)x" (to)]}
— %trace[P(to)Xo}

which gives expected cost-to-go with uncertain IC.

e Now return to case with w = 0 — consider the average performance
of the stochastic LQR controller.

e To do this, recognize that if we apply the LQR control, we have a
system where the cost is based on z’ R,,z = x' Rx for the closed-
loop system:

x(t) = (A{t) = Bu(t)K(1))x(t) + Bu(t)w(t)
z(t) = C.(t)x(t)

e This is of the form of a linear time-varying system driven by white
Gaussian noise — called a Gauss-Markov Random process®.

22Bryson 11.4
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e For a Gauss-Markov system we can predict the mean square value
of the state X (t) = E[x(t)x(t)!] over time using X (0) = X, and

X(t) = [A(t) = But)K(8)] X () + X () [A(t) = But)K(t)]" + By Ry By,
— Matrix differential Lyapunov Equation.

e Can also extract the mean square control values using

Elu(tju(t)'] = K(O)X(O)K(1)"

e Now write performance evaluation as:
t
J, = %E {XT(tf)Pth(tf)—l—/f(XT(t)RXX(t)X(t)—i—uT(t)Ruu(t)u(t))dt}
to

_ %E {trace [Ptfx(tf)XT(tf) n /t tf(RXX(t)X(t)XT(t)+Ruu(t)u(t)uT(t))dt}}

0

— %trace [Pth(tf) + /tf (R (1) X (t) + Ruu(t)K(t)X(t)K(t)T)dt}

e Not too useful in this form, but if P(t) is the solution of the LQR
Riccati equation, then can show that the cost can be written as:

J, = %trace {P(tO)X(to) + /t tf(P(t)Bwang)dt}

0

— First part, strace {P(t))X(f)} is the same cost-to-go from the
uncertain initial condition that we identified on 11-5

— Second part shows that the cost increases as a result of the process
noise acting on the system.

June 18, 2008
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e Sketch of Proof: first note that

tr g
Plto)X(t) = Py X(t) + | ZPOX ()t =0
J, - %trace:f@)<uf)4-f«uﬁ)(a0)—-f@)(@fﬂ

+ gorace | [ (Rult)X(0) + RuOK (X (0K (0) o]

« gumsce | [ (p0x0) + POX )]

and (first reduces to standard CARE if K(t) = R_ !B P(t))
—P)X(t) = (A~ B,K(1)" P(t)X(t) + P(t)(A— B,K())X(t)
+ R X(t) + K(t) Ry K (1) X (t)

P(t)X(t) = P(t)(A— B,K(t))X(t) + P(t)X(t)(A— B,K(t))"
+P(t)ByRywB.

e Rearrange terms within the trace and then cancel terms to get final
result.
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e Problems exist if we set ¢y = 0 and ¢y — oo because performance will

be infinite

— Modify the cost to consider the time-average

1
J, = lim
tp—ooty — 1o

Js

— No impact on necessary conditions since this is still a fixed end-time
problem.

— But now the initial conditions become irrelevant, and we only need
focus on the integral part of the cost.

e For LTI system with stationary process noise (constant Ry.,) and well-
posed time-invariant control problem (steady gain u(t) = — K:x(?))
mean square value of state settles down to a constant

lim X(t) = X
tf—>oo

O - (A _ BuKss) Xss + Xss (A - BUKSS)T + BU)RWWBZ;

— Can show that time-averaged mean square performance is

J, = %trace ([RXX + KSZ;RHHKSS]XSS)

1
5trace[PsstRWWBZ;]

e Main point: this gives a direct path to computing the expected
performance of a closed-loop system

— Process noise enters into computation of X

June 18, 2008



Consider a missile roll attitude control system with w the roll angular
velocity, ¢ the aileron deflection, () the aileron effectiveness, and ¢
the roll angle, then

. 1 .
d=u w:——w+95+n(t) »=w
T T
where n(t) is a noise input.
Then this can be written as:
0 0 0 0T3¢ 1
w|=|-1/t Q/T 0 w|l+|0|lut+]|1]|n
é 0 1 0o 0
Use 7 =1, Q =10, Ry = 1/(7)? and
(7/122 0 0
Ry = 0 0 0

0 0 (m/180)

then solve LQR problem to get feedback gains:
K=1qr (A,B,Rxx,Ruu)
K =126.9 29.0 180.0]

Then if n(t) has a spectral density of 1000 (deg/sec?)?- sec 2

Find RMS response of the system from
X=1yap (A-B*K,Bw*Rww*Bw’)

95 —42 =7
X=|-42 73 0
—7 0 0.87

and that \/ E|¢?| ~ 0.93deg

23Process noise input to a derivative of w, so the units of n(t) must be deg/sec?, but since E[n(t)n(7)] = Rwwd(t — 7) and

[ &(t)dt = 1, then the units of §(¢) are 1/sec and thus the units of Ryw are (rad/sec?)?- sec=rad?/sec®

June 18, 2008
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e Goal: design an optimal controller for a system with incomplete
and noisy measurements

e Setup: for the system (possibly time-varying)
x = Ax+ B,u-+ B,w
z = (C.x
y = Cx+v
with
— White, Gaussian noises w ~ N (0, Ryy) and v ~ N(0, Ryy), with
Row > 0and Ry > 0

— Initial conditions x(%(), a stochastic vector with E[x(t)] = xq and
El(x(ty) — %0)(x(ty) — X0)'] = Qy so that

x(to) ~ N(Xo, Qo)

e Cost:

J=F {%XT(tf)Pt X(tp) + % /to f(zT(t)RZZz(t) + uT(t)Ruuu(t))dt}

with R,, > 0, Ry, > 0, B, > 0
e Stochastic Optimal Output Feedback Problem: Find
ult)=fly(r),to <7 <t] ty<t<ty
that minimizes J
e The solution is the Linear Quadratic Gaussian Controller, which uses
— LQE (10-15) to get optimal state estimates x(¢) from y(¢) using
gain L(t)

— LQR to get the optimal feedback control u(t) = — K (t)x
— Separation principle to implement u(t) = — K (¢)x(t)

June 18, 2008
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e Regulator: u(t) = —K(t)x(t)

K(t) = Ry B,P(t)
—P(t) = ATP(t)+ P(t)A+ CTR,C. — P(t)B,R;' BT P(t)
P(ty) = P,

f

e Estimator from:
x(t) = Ax + Byu + L(t)(y(t) — C,%x(t))
where x(ty) = X and Q(ty) = Qg

Qt) = AQ(t) + QAT + B,RywB — Qt)CI R C,Q(t)
L(t) = Qt)C/ Ry}

e A compact form of the compensator is:

Xc - Acxc + ch

u = —C.x,
with x, = x and
A, = A-B,K(t)— L(t)C,
B, = L(t)
C. = K(t)

e Valid for SISO and MIMO systems. Plant dynamics can also be time-
varying, but suppressed for simplicity.
— Obviously compensator is constant if we use the steady state regu-
lator and estimator gains for an LTI system.
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e Assuming LTI plant

e As with the stochastic LQR case, use time averaged cost
— To ensure that estimator settles down, must take {; — —oo and
ty — 00, so that forany ¢, 1) <t < ¢ty
_ 1
J = lim
tf%oo tf —_ tO

tp——00

J

— Again, this changes the cost, but not the optimality conditions

e Analysis of .J shows that it can be evaluated as

J = El"(t)R,yz(t) + " () Rugu(?)
— Tr[PssLssvaLgs + QSSCZTRZZCZ]

— Tr[PSSBwRWWBZ; + QSSK;Z;‘RUUKSS:I
where P, and (), are the steady state solutions of

ATPSS + PSSA + CZRZZCZ - PssBuRnggpss = 0

AQSS + QSSAT + Bwang - QSSCZTR;\}CZJQSS — O
with
Ky =Ry B, Py and Ly, = Q.C, R,/

e (Can evaluate the steady state performance from the solution of 2
Riccati equations

— More complicated than stochastic LQR because J must account for
performance degradation associated with estimation error.

— Since in general x(t) # x(t), have two contributions to the cost
<> Regulation error x # 0
<& Estimation error x # 0

June 18, 2008



e Note that

Sy
|

= Tr[PyLyRowL, + Q.CITR,,C.]
= Tr[PyByRuw Bl + QKL Ry K,

both of which contain terms that are functions of the control and
estimation problems.

e To see how both terms contribute, let the regulator get very fast
= Ry — 0. A full analysis requires that we then determine what
happens to P, and thus J. But what is clear is that:

Rlimo J > Tr[QSSC’ZTRZZCZ]

which is independent of R,
— Thus even in the limit of no control penalty, the performance is
lower bounded by term associated with estimation error ().
e Similarly, can see that limp, .oJ > Tr|[P,ByRywBl] which is re-
lated to the regulation error and provides a lower bound on the per-
formance with a fast estimator

— Note that this is the average cost for the stochastic LQR problem.

e Both cases illustrate that it is futile to make either the estimator or
regulator much “faster” than the other
— The ultimate performance is limited, and you quickly reach the
“knee in the curve” for which further increases in the authority of
one over the other provide diminishing returns.
— Also suggests that it is not obvious that either one of them should
be faster than the other.

e Rule of Thumb: for given R,, and Ry, select R, and R, so that

the performance contributions due to the estimation and regulation
error are comparable.

June 18, 2008
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e Now consider what happens when the control u = —Kx is changed
to the new control u = —Kx (same K).

— Assume steady state values here, but not needed.

— Previous looks at this would have analyzed the closed-loop stability,
as follows, but we also want to analyze performance.

plant : x = Ax + B,u + B,w
z=C0C.x
y=0x+vVv
compensator : x. = Ax.+ By
u=-0.x,.

e Which give the closed-loop dynamics

x | A -B,C. X n B, 0 W
x. | B.C, A, X, 0 B, Y
7 = _C’ZO} *
i | x, |
y = [C, 0] |2 |+v

e |t is not obvious that this system will even be stable: \;(A.) < 07

— To analyze, introduce n = x — X, and the similarity transform

e - [l

so that Aq = TA4T ' = A, and when you work through the
math, you get

T _[A-BK B
- 0  A-1LC,

June 18, 2008
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e Absolutely key points:

1 Ni(Aa) = Ni(A4a)

2. A. is block upper triangular, so can find poles by inspection:

det(sI — Ay) = det(sI — (A — B,K)) - det(sI — (A — LC,))

The closed-loop poles of the system consist of the
union of the regulator and estimator poles

— This shows that we can design any estimator and regulator sepa-
rately with confidence that the combination will stabilize the system.

<& Also means that the LQR/LQE problems decouple in terms of
being able to predict the stability of the overall closed-loop system.

e Let G.(s) be the compensator transfer function (matrix) where
u=—C,(sI —A.) 'By = —G.(s)y

— Reason for this is that when implementing the controller, we often
do not just feedback —y(¢), but instead have to include a reference
command r(t)

— Use servo approach and feed back e(t) = r(t) — y(t) instead

r e u y
G(s) G(s) F—>

—Sonowu = Gee =G (r—y), andifr = 0, then have u = G.(—y)

e Important points:

— Closed-loop system will be stable, but the compensator dynamics
need not be.

— Often very simple and useful to provide classical interpretations of
the compensator dynamics G.(s).

June 18, 2008
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Performance optimality of this strategy is a little harder to establish

— Now saying more than just that the separation principle is a “good”
idea = are trying to say that it is the “best” possible solution

Approach:

— Rewrite cost and system in terms of the estimator states and dy-
namics = recall we have access to these

— Design a stochastic LQR for this revised system =- full state feed-
back on x(t)

Start with the cost (use a similar process for the terminal cost)

E[z' R,z] = E[x' RX] {£x}
= E[(x — %+ %) R (x — X + %)) (x=x-x}
— B[’ Ry X] + 2E[X' Ry x| + E[X" Ry X]

Note that X(t) is the minimum mean square estimate of x(t) given
y(7), u(r), to <7 <t
— Key property of that estimate is that X and X are uncorrelated®*

E[x" Ry X| = trace[E{xx "} Ry ] = 0

Also,
E[x' Ry x| = Etrace(R.%xx')] = trace(RuQ)
where () is the solution of the LQE Riccati equation (11-11)

So, in summary we have:

E[x" Ryx| = trace(RuQ) + E[x! RyX]

24Gelb, pg 112
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e Now the main part of the cost function can be rewritten as

1

J - E{§ /to tf(zT(t)RZZz(t)+uT(t)Ruuu(t))dt}

_E {1 /t O RGE(® + uT(t)Ruuu(t))dt}

2 0

1 [
—1—5/ (trace(RwQ))dt

to
— The last term is independent of the control u(t) = it is only a
function of the estimation error

— Objective now is to choose the control u(t) to minimize the first

term

e But first we need another key fact?®: If the optimal estimator is
x(t) = AX(t) + Bu(t) + L(t)(y(t) — C,x(t))
then by definition, the innovations process
i(1) = y(t) - C,x()
is a white Gaussian process, so that i(t) ~ N'(0, Ry, + C,QC))

e [hen we can rewrite the estimator as
x(t) = Ax(t) + B,u(t) + L(t)i(t)

which is an LTI system with i(¢) acting as the process noise through
a computable L(t).

25Qelb, pg 317
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e So combining the above, we must pick u(t) to minimize
1 [
J=F {5/ (%7 (t) RexX(t) + uT(t)Ruuu(t))dt}+term ind. of u(t)
10
subject to the dynamics

x(t) = Ax(t) + Byu(t) + L(t)i(t)

— Which is a strange looking Stochastic LQR problem

— As we saw before, the solution is independent of the driving process
noise

u(t) = —K(H)x(t)

— Where K (t) is found from the LQR with the data A, B, Ry, and
R, and thus will be identical to the original problem.

e Combination of LQE/LQR gives performance optimal result.

June 18, 2008



Spr 2008 Simple Example 16.323 12-19

01 0 0
X = X + u —+ w
00 [1] [1]
10
z = X
01

Yy = [ 10 } X + v
where in the LQG problem we have
10
01
e Solve the SS LQG problem to find that

Tr[P,s LRy L) =80 Tr[Q.C!'R,C.] =28
Tr[P By RywBl] = 1.7 Tr[Q. KL RuwK,s = 9.1

Rzz -

] quu:1 vazl RWW:1

e Suggests to me that we need to improve the estimation error = that
R, is too large. Repeat with

10
0 1

R,, = Ry =1 Ry =0.1 Ryw =1

Tr[P, Ly Ry L] =41 Tr[Q.CTR,C.]=1.0
Tr|[PyByRywBl] = 1.7 Tr[QuK. R.K = 3.7

and
10
01

R,, = Ry =1 Ry, = 0.01 Ryw =1

Tr|[Py LRy L] =3.0 Tr[Q.C'R,C.] =0.5
Tr[Py By RywBl] = 1.7 Tr[Qu K. RuwK,s = 1.7

June 18, 2008
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e LQG analysis code
A=[0 1;0 0];%
Bu=[0 1]’;%
Bw=[0 1]1’; %
Cy=[1 0];%
Cz=[1 0;0 11;%
Rww=1;%
Rvv=1;%
Rzz=diag([1 11);%
Ruu=1;%
[K,P]=1qr (A,Bu,Cz*Rzz*Cz’ ,Ruu) ;%
[L,Ql=1qr(A’,Cy’ ,Bw*Rww*Bw’ ,Rvv) ;L=L";%
Ni=trace (P*x(L*Rvv*L’))%
N2=trace (Q*(Cz’*Rzz*Cz) )Y
N3=trace (P* (Bw*Rww*Bw’) )%
N4=trace (Q* (K’ *RuuxK) )Y
[N1 N2;N3 N4]

June 18, 2008
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Consider the linearized longitudinal dynamics of a hypothetical heli-
copter. The model of the helicopter requires four state variables:

— 0(t):fuselage pitch angle (radians)

— q(t):pitch rate (radians/second)

— u(t):horizontal velocity of CG (meters/second)

— x(t):horizontal distance of CG from desired hover (meters)
The control variable is:

— ¢ (t): tilt angle of rotor thrust vector (radians)

Fuselage-Fixed Axis

Tail Rotor \ Rotor Thrust Vector

Desired Hover Paint
X

-
«

777777777777 777777777777777

Figure by MIT OpenCourseWare.

Figure 12.1: Helicopter in Hover

e The linearized equation of motion are:

0(t) = qlt)

G(t) = —0.415¢(t) — 0.011u(t) + 6.278(¢) — 0.011w(¢)

W) = 9.80(t) — 1.43¢(t) — .0198u(t) + 9.85(t) — 0.0198w(¢)
z(t) = u(t)

g

— w(t) represents a horizontal wind disturbance

— Model w(t) as the output of a first order system driven by zero
mean, continuous time, unit intensity Gaussian white noise £(?):

w(t) = —0.2w(t) + 6£(t)

June 18, 2008
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e First, treat original (non-augmented) plant dynamics.

— Design LQR controller so that an initial hover position error, (0) =
1 m is reduced to zero (to within 5%) in approximately 4 sec.

Initial response of the closed loop system with x(0) = 1
T T T T T

——LOR:ip=5
——LQR: p =50
LQR: p=05 |

08

06

041
0.2

0.2

-0.4
0

Figure 12.2: Results show that R,, = 5 gives reasonable performance.

e Augment the noise model, and using the same control gains, form the
closed-loop system which includes the wind disturbance w(t) as part
of the state vector.

e Solve necessary Lyapunov equations to determine the (steady-state)
variance of the position hover error, x(t) and rotor angle §(%).

— Without feedforward:

V El2?] = 0.048 vV E[6%] = 0.017
e Then design a LQR for the augmented system and repeat the process.
— With feedforward:

VE[? =0.0019  /E[6? = 0.0168

June 18, 2008
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e Now do stochastic simulation of closed-loop system using At = 0.1.

— Note the subtly here that the design was for a continuous system,
but the simulation will be discrete

— Are assuming that the integration step is constant.

— Need to create ( using the randn function, which gives zero mean
unit variance Gaussian noise.

— To scale it correctly for a discrete simulation, multiply the output
of randn by 1/v/At, where At is the integration step size.?

— Could also just convert the entire system to its discrete time equiv-
alent, and then use a process noise that has a covariance

Qd - RWW/At

26Franklin and Powell, Digital Control of Dynamic Systems
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Stochastic Simulation of Helicopter Response: No FF

1.2 T T T T T T T
—cts
------- disc
‘-\; -
N o —— =
0.2 L I \'—'l/ I | | |
0 1 2 3 4 5 6 7 8
Time
05 T T T T T T
04
0.3 &
_. 02 B
3 01 /—\ .
[0 ] = | V4 — e ~
01F \/ -
02 1 L 1 | 1 L 1
0 1 2 3 4 5 6 7 8
Time
Stochastic Simulation of Helicopter Response: with FF
1.2 T T T T T T T
—cts
------- disc
‘-\; -
f---‘-‘— ----------
0.2 L |v | 1 | |
0 1 2 3 4 5 6 7 8
Time
05 T T T T T T
_— with FF
04
0.3 &
_. 02 B
= 01 /.4\ .
D} 4 i —— ik —ad
ol \_/ |
02 1 L 1 | 1 L 1
0 1 2 3 4 5 6 7 8
Time

Figure 12.3: Stochastic Simulations with and without disturbance feedforward.
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% 16.323 Spring 2008

% Stochastic Simulation of Helicopter LQR

% Jon How

pA

clear all, clf, randn(’seed’,sum(100*clock));
% linearized dynamics of the system
A=[0100; 0-0.415 -0.011 0;9.8 -1.43 -0.0198 0;0 0 1 0];
Bw [0 -0.011 -0.0198 0]’;

Bu [0 6.27 9.8 0]’;

Cz = [0 00 1];

Rxx = Cz’*Cz;

rho = 5;

Rww=1;

% lqr control
[X,S,E]l=1qr(A,Bu,Rxx,rho);
[K2,S,E]=1qr(A,Bu,Rxx,10*rho) ;
[K3,S8,E]=1qr(A,Bu,Rxx,rho/10);

% initial response with given x0

x0 = [000 1]°;

Ts=0.1; % small discrete step to simulate the cts dynamics

tf=8;t=0:Ts:tf;

[y,x] = initial(A-BuxK,zeros(4,1),Cz,0,x0,t);

[y2,x2] = initial(A-Bux*K2,zeros(4,1),Cz,0,x0,t);

[y3,x3] = initial(A-Bux*K3,zeros(4,1),Cz,0,x0,t);

subplot (211), plot(t,[y y2 y31,[0 81,.05%[1 11,’:>,[0 8],.05%[-1 -11,:,’LineWidth’,2)
ylabel(’x’);title(’Initial response of the closed loop system with x(0) = 1)

h = legend([’LQR: \rho = ’,num2str(rho)], [’LQR: \rho = ’,num2str(rho*10)], [’LQR: \rho =
axes (h)

subplot(212), plot(t, [(K*x’)’ (K2#x2’)’ (K3*x3’)’],’LineWidth’,2);grid on
xlabel(’Time’), ylabel(’\delta’)

print -r300 -dpng helil.png

% shaping filter

Ah=-0.2;Bh=6;Ch=1;

% augment the filter dyanmics

Aa = [A Bw*xCh; zeros(1,4) Ah];

Bua = [Bu;0];

Bwa [zeros(4,1); Bh]l;

Cza = [Cz 0];

Ka = [K 0]; % i.e. no dist FF

Acla = Aa-Bua*Ka; % close the loop using NO dist FF
Pass = lyap(Acla,Bwa*Rww*Bwa’); % compute SS response to the dist
vx = CzaxPass*Cza’; J, state resp

vd = Ka*Pass*Ka’; % control resp

zeta = sqrt(Rww/Ts)*randn(length(t),1); % discrete equivalent noise
[y,x] = lsim(Acla,Bwa,Cza,0,zeta,t,[x0;0]); % cts closed-loop sim

yA

% second simulation approach: discrete time

pA

Fa=c2d(ss(Acla,Bwa,Cza,0),Ts); % discretize the closed-loop dynamics
[dy,dx] = 1sim(Fa,zeta,[],[x0;0]); % stochastic sim in discrete time
u = Ka*x’; % find control commands given the state response

% disturbance FF

[KK,SS,EE]=1qr (Aa,Bua,Cza’*Cza,rho); % now K will have dist FF
Acl=Aa-Bua*KK;

PP=1yap(Acl,Bwa*Rww*Bwa’) ;

vxa = Cza*PPxCza’;

vda = KK*PP*KK’;

[ya,xa] = lsim(Acl,Bwa,Cza,0,zeta,t,[x0;0]); % cts sim
F=c2d(ss(Acl,Bwa,Cza,0),Ts); ’% discretize the closed-loop dynamics
[dya,dxal] = 1lsim(F,zeta,[],[x0;0]); % stochastic sim in discrete time
ua = KK*xa’; % find control commands given the state response
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6s figure(2);

69  subplot(211)

70 plot(t,y,’LineWidth’,2)

71 hold on;

72 plot(t,dy,’r-.’,’LineWidth’,1.5)

73 plot ([0 max(t)],sqrt(vx)*[1 1],’m--’,[0 max(t)],-sqrt(vx)*[1 1],’m--’,’LineWidth’,1.5);
74 hold off

75 xlabel(’Time’);ylabel(’y(t)’);legend(’cts’,’disc’)

76  title(’Stochastic Simulation of Helicopter Response: No FF’)

77 subplot(212)

78 plot(t,u,’LineWidth’,2)

79 xlabel(’Time’);ylabel(’u(t)’);legend(’No FF’)

80 hold on;

81 plot([0 max(t)],sqrt(vd)*[1 1],’m--’,[0 max(t)],-sqrt(vd)*[1 1],’m--’,’LineWidth’,1.5);
82  hold off

83

84 figure(3);

85  subplot(211)

86 plot(t,ya,’LineWidth’,2)

87 hold on;

88 plot(t,dya,’r-.’,’LineWidth’,1.5)

8o plot([0 max(t)],sqrt(vxa)*[1 1],’m--’, [0 max(t)],-sqrt(vxa)*[1 1],’m--’,’LineWidth’,1.5);
90 hold off

91  xlabel(’Time’);ylabel(’y(t)’);legend(’cts’,’disc’)

92  title(’Stochastic Simulation of Helicopter Response: with FF’)

93  subplot(212)

94 plot(t,ua,’LineWidth’,2)

95  xlabel(’Time’);ylabel(’u(t)’);legend(’with FF’)

96 hold on;

o7 plot([0 max(t)],sqrt(vda)*[1 1],’m--’,[0 max(t)],-sqrt(vda)*[1 1],’m--’,’LineWidth’,1.5);
98 hold off

99

100 print -f2 -r300 -dpng heli2.png

101 print -f3 -r300 -dpng heli3.png
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e Now consider what happens if we reduce the measurable states and
use LQG for the helicopter control /simulation

e Consider full vehicle state measurement (i.e., not the disturbance
state)

Cy = [ 1y O]
e Consider only partial vehicle state measurement

01000
Cy_[OO()lO]

e Set R,, small.
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Stochastic Simulation of Helicopter Response: with FF
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Figure 12.4: LQR with disturbance feedforward compared to LQG
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Stochastic Simulation of Helicopter Response: with FF
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Figure 12.5: Second LQR with disturbance feedforward compared to LQG

June 18, 2008



Spr 2008

16.323 12-30

Helicopter LQG

© 0 N e U oA W N R

25

% 16.323 Spring 2008

% Stochastic Simulation of Helicopter LQR - from Bryson’s Book
% Jon How

%

clear all, clf, randn(’seed’,sum(100*clock));

set (0, ’DefaultAxesFontName’,’arial’)

set (0, ’DefaultAxesFontSize’,12)

set (0, ’DefaultTextFontName’,’arial’)

% linearized dynamics of the system state=[theta q dotx x]
A=[0100; 0-0.415 -0.011 0;9.8 -1.43 -0.0198 0;0 0 1 0];
Bw = [0 -0.011 -0.0198 0]’;

Bu = [0 6.27 9.8 0]’;
Cz =[000 1];

Rxx = Cz’*Cz; Rww=1;
rho = 5;

% lgr control
[K,S,E]=1qr(A,Bu,Rxx,rho);

% initial response with given x0

x0 = [000 1]7;

Ts=0.01; % small discrete step to simulate the cts dynamics
t£=20;t=0:Ts:tf;nt=length(t);

% Now consider shaped noise with shaping filter

Ah=-0.2;Bh=6;Ch=1;

% augment the filter dyanmics

Aa = [A Bw*Ch; zeros(1,4) Ah];

Bua = [Bu;0];

Bwa = [zeros(4,1); Bh]l;

Cza = [Cz 0];

x0a=[x0;0];

%zeta = Rww/sqrt(Ts)*randn(length(t),1); % discrete equivalent noise
zeta = sqrt(Rww/Ts)*randn(length(t),1); % discrete equivalent noise

%%%h% Now consider disturbance FF

[KK,SS,EE]=1qr (Aa,Bua,Cza’*Cza,rho); % now K will have dist FF
Acl=Aa-Bua*KK;

PP=1yap(Acl,Bwa*Rww*Bwa’) ;

vxa = Cza*PP*Cza’; Ystate

vda = KK*PP*KK’; Y%control

%

[ya,xal = 1lsim(Acl,Bwa,Cza,0,zeta,t,x0a); % cts sim
F=c2d(ss(Acl,Bwa,Cza,0),Ts); % discretize the closed-loop dynamics
[dya,dxa] = 1sim(F,zeta,[],x0a); % stochastic sim in discrete time
ua = KK*xa’; % find control commands given the state response

%%k’ Now consider Output Feedback Case
% Assume that we can only measure the system states
% and not the dist one
FULL=1;
if FULL
Cya=eye(4,5); % full veh state
else
Cy=[0 1 0 0;0 0 0 1]; % only meas some states
Cya=[Cy [0;0]1];
end
Ncy=size(Cya,1) ;Rvv=(1e-2) "2*eye(Ncy) ;
[L,Q,FF]=1qgr(Aa’,Cya’ ,Bwa*Rww*Bwa’ ,Rvv) ;L=L’;% LQE calc
%closed loop dyn
Acl_lqg=[Aa -Bua*KK;L*Cya Aa-Bua*KK-L*Cyal;
Bcl_lqg=[Bwa zeros(5,Ncy);zeros(5,1) L];
Ccl_lqg=[Cza zeros(1,5)];Dcl_lgg=zeros(1l,1+Ncy);
x0_lqg=[x0a;zeros(5,1)];
zeta_lqg=zeta;
% now just treat this as a system with more sensor noise acting as more
% process noise
for ii=1:Ncy

zeta_lqg = [zeta_lqg sqrt(Rvv(ii,ii)/Ts)*randn(nt,1)];% discrete equivalent noise
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68 end

69 [ya_lqg,xa_lqg] = lsim(Acl_lqg,Bcl_lqg,Ccl_lqg,Dcl_lqg,zeta_lqg,t,x0_1qg); % cts sim

70  F_lgg=c2d(ss(Acl_lqg,Bcl_lqg,Ccl_lqg,Dcl_1qg),Ts); % discretize the closed-loop dynamics
71 [dya_lqg,dxa_lqgl = lsim(F_lqg,zeta_lqg, []1,x0_1qg); % stochastic sim in discrete time
72 ua_lqg = [zeros(1,5) KKl*xa_lqg’; % find control commands given the state estimate

73

74 %LQG State Perf Prediction

75 X_lgg=lyap(Acl_lqg,Bcl_lqg*[Rww zeros(1,Ncy);zeros(Ncy,1) Rvv]*Bcl_lqg’);

76 vx_lqg=Ccl_lqg*X_lqg*Ccl_lqg’;

77 vu_lgqg=[zeros(1,5) KK]*X_lqg*[zeros(1,5) KK]’;

78

79 figure(3);clf

s0  subplot(211)

81 plot(t,ya,’LineWidth’,3)

82 hold on;

83 plot(t,dya,’r-.’,’LineWidth’,2)

84 plot([0 max(t)],sqrt(vxa)*[1 1]1,’m--’,[0 max(t)],-sqrt(vxa)*[1 1],’m--’,’LineWidth’,1);
85 hold off

86 xlabel(’Time’);ylabel(’y(t)’);legend(’cts’,’disc’)

87 title(’Stochastic Simulation of Helicopter Response: with FF’)

88  subplot(212)

89  plot(t,ua,’LineWidth’,2)

90  xlabel(’Time’);ylabel(’u(t)’);legend(’with FF’)

91 hold on;

92 plot([0 max(t)],sqrt(vda)*[1 1],’m--’, [0 max(t)],-sqrt(vda)*[1 1],’m--’,’LineWidth’,1);
93 axis([0 tf -0.2 .6])

94 hold off

95 print -f3 -r300 -dpng heli_lqg_1.png;

o7  figure(4);clf

9s  subplot(211)

99  plot(t,ya_lqg,’LineWidth’,3)

100 hold on;

101 plot(t,dya_lqg,’r-.’,’LineWidth’,2)

102 plot([0 max(t)],sqrt(vx_lqg)*[1 11,’m--’,[0 max(t)],-sqrt(vx_lqg)*[1 1],’m--’,’LineWidth’,1);
103 hold off

104 xlabel(’Time’);ylabel(’y(t)’);legend(’cts’,’disc’)

105 title([’Stochastic Simulation of Helicopter Respomse: LQG R_{v v} = ’,num2str(Rvv(1,1))])
106  subplot(212)

107 plot(t,ua_lqgg,’LineWidth’,2)

108 xlabel(’Time’);ylabel(’u(t)’);%legend(’with FF’)

109 if FULL

110 legend(’Full veh state’)

111 else

112 legend(’Pitch rate, Horiz Pos’)
113 end

114 hold on;

115 plot([0 max(t)],sqrt(vu_lqg)*[1 1],’m--’,[0 max(t)],-sqrt(vu_lqg)*[1 1],’m--’,’LineWidth’,1);
116 axis([0 tf -0.2 .6])

117 hold off

118 if FULL

119 print -f4 -r300 -dpng heli_lqg_2.png;
120 else
121 print -f4 -r300 -dpng heli_lqg_3.png;
122 end
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e Bryson, page 209 Consider the stabilization of a 747 at 40,000 ft
and Mach number of 0.80. The perturbation dynamics from elevator

angle to pitch angle are given by

B 1.16(s 4+ 0.0113)(s 4 0.295)
82+ (0.0676)2][(s + 0.375)2 + (0.882)?]

1. Note that these aircraft dynamics can be stabilized with a simple

lead compensator

e () _ 35S + 0.6
0(s) s+ 3.6

2. Can also design an LQG controller for this system by assuming that
B, = B, and C, = C}, and then tuning R,, and R, to get a
reasonably balanced performance.

— Took Ry = 0.1 and tuned R,

Pole-Zero Map

lead
LQG

Imaginary Axis
o
000
=

I I I I I I I
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Real Axis

Figure 12.6: B747: Compensators
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RL of B747 system with the given Lead Comp
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RL of B747 system with the LQG Comp
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Figure 12.7: B747: root locus (Lead on left, LQG on right shown as a function of
the overall compensator gain)
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3. Compare the Bode plots of the lead compensator and LQG designs
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Figure 12.8: B747: Compensators and loop TF
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4. Consider the closed-loop TF for the system
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Figure 12.9: B747: closed-loop TF

5. Compare impulse response of two closed-loop systems.
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Figure 12.10: B747: Impulse response

6. So while LQG controllers might appear to be glamorous, they are
actually quite ordinary for SISO systems.
— Where they really shine is that it this simple to design a MIMO
controller.
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B747 LQG

% 16.323 B747 example

% Jon How, MIT, Spring 2007

%

clear all

set (0, ’DefaultAxesFontName’,’arial’)
set (0, ’DefaultAxesFontSize’,12)

set (0, ’DefaultTextFontName’,’arial’)

© 0w N o U A W N e

gn=1.16%conv([1 .0113],[1 .295]);

10 gd=conv([1 O .06767°2],[1 2%.375 .37572+.882"2]);
11 % lead comp given

12 kn=3.5%[1 .6];kd=[1 3.6];

14 f=logspace(-3,1,300);
15 g=freqresp(gn,gd,2*pi*f*sqrt(-1));

17 [nc,dc]=cloop(conv(gn,kn),conv(gd,kd)); % CLP with lead
18 gc=freqresp(nc,dc,2xpi*f*sqrt(-1)); % CLP with lead

19 jroots(dc)

20  %loglog(f,abs([g gcl))

22 get state space model

23 [a,b,c,d]=tf2ss(gn,gd);

24 % assume that Bu and Bw are the same

25 % take y=z

26 Rzz=1;Ruu=0.01;Rww=0.1;Rvv=0.01;

27 [k,P,e1] = 1lgr(a,b,c’*Rzz*c,Ruu);

28 [1,Q,e2] = 1lqe(a,b,c,Rww,Rvv);

29 [ac,bc,cc,tdc] = reg(a,b,c,d,k,1);

30 [knl,kdl]=ss2tf(ac,bc,cc,tdc);

31 Ni=trace(P*(1*Rvv*1’))Y%

32 N2=trace(Q*(c’*Rzz*c))

33 N3=trace(P*(b*Rww*b’))%

34 Nd=trace(Q*(k’*Ruu*k))%

35 N=[N1 N2 N1+N2;N3 N4 N3+N4]

36

37 [ncl,dcl]=cloop(conv(gn,knl),conv(gd,kdl)); % CLP with lqg
38  gcl=freqresp(ncl,dcl,2*pixf*sqrt(-1)); % CLP with lqg
30 [[roots(dc);0;0;0] roots(dcl)]

40 figure(2);clf;

41 loglog(f,abs([g gc gcll)) ' mag plot of closed loop system
42 setlines(2)

43 legend(’G’,’Gcl_{lead}’,’Gcl_{1qgl}’)

44 xlabel(’Freq (rad/sec)’)

45

46 Gclead=freqresp(kn,kd,2*pi*f*sqrt(-1));

47 Geclqg=freqresp(knl,kdl,2*pi*f*sqrt(-1));

49 figure(3);clf;

50 subplot(211)

51 loglog(f,abs([g Gclead Gclqgl)) % Bode of compesantors
52 setlines(2)

53 legend(’°G’,’Gc_{lead}’,’Gc_{lqg}’)

54 xlabel(’Freq (rad/sec)’)

55 axis([le-3 10 le-2 1e2])

56  subplot(212)

57  semilogx(f,180/pi*unwrap(phase([g])));hold on

58  semilogx(f,180/pi*unwrap(phase([Gclead])),’g’)

50  semilogx(f,180/pi*unwrap(phase([Gclqggl)),’r’)

60 xlabel(’Freq (rad/sec)’)

61 hold off

62 setlines(2)

63 legend(’G’,’Gc_{lead}’,’Gc_{1lqgl}’)

64

65 figure(6);clf;

66  subplot(211)

67 loglog(f,abs([g g.*Gclead g.*Gclqgl)) % Bode of Loop transfer function
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69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

92
93
94
95
96
97
98
99
100
101
102

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

setlines(2)
legend(’G’,’Loop_{lead}’,’Loop_{1lqg}’)
xlabel(’Freq (rad/sec)’)

axis([1e-3 10 1le-2 1e2])

subplot (212)

semilogx (f,180/pi*unwrap (phase([g])));hold on
semilogx (f,180/pi*unwrap(phase([g.*Gclead])),’g’)
semilogx (f,180/pi*unwrap (phase([g.*Gclqgl)),’r’)
xlabel (’Freq (rad/sec)’)

hold off

setlines(2)
legend(’G’,’Loop_{lead}’,’Loop_{1lqg}’)

% RL of 2 closed-loop systems
figure(1);clf;rlocus(conv(gn,kn),conv(gd,kd));axis(2*x[-2.4 0.1 -0.1 2.4])
hold on;plot(roots(dc)+sqrt(-1)*eps,’md’,’MarkerFaceColor’,’m’) ;hold off
title(’RL of B747 system with the given Lead Comp’)
figure(4);clf;rlocus(conv(gn,knl),conv(gd,kdl));axis(2*[-2.4 0.1 -0.1 2.4])
hold on;plot(roots(dcl)+sqrt(-1)*eps,’md’, ’MarkerFaceColor’,’m’);hold off
title(’RL of B747 system with the LQG Comp’)

% time simulations

Ts=0.01;

[y1,x,t]=impulse(gn,gd, [0:Ts:10]);
[y2]=impulse(nc,dc,t);
[y3]=impulse(ncl,dcl,t);
[ulead]=1sim(kn,kd,y2,t); % noise free sim
[ulggl=1sim(knl,kdl,y3,t); % noise free sim

figure(5);clf;

subplot (211)

plot(t, [yl y2 y31)
xlabel(’Time’)

ylabel (’y(t)?)

setlines(2)
legend(’G’,’Gel_{lead}’,’Gecl_{1qg}’)
subplot (212)

plot(t, [ulead ulqggl)
xlabel(’Time’)

ylabel(’u(t)’)

setlines(2)

legend (’Gec_{lead}’,’Gc_{1qg}’)

figure(7)
pzmap (tf (kn,kd),’g’ ,tf (knl,kdl),’r’)
legend(’lead’,’LQG’)

print -depsc -f1 b747_1.eps;jpdf (°’b747_1’)
print -depsc -f2 b747_2.eps;jpdf (’b747_2°)
print -depsc -f3 b747_3.eps;jpdf (’b747_3")
print -depsc -f4 b747_4.eps;jpdf (*b747_4’)
print -depsc -f5 b747_5.eps;jpdf (’b747_5")
print -depsc -f6 b747_6.eps;jpdf (’b747_6")
print -depsc -f7 b747_7.eps;jpdf (’b747_7)
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