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16.323 Lecture 11

Estimators/Observers

e Bryson Chapter 12
e Gelb — Optimal Estimation
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Estimators/Observers

e Problem: So far we have assumed that we have full access to the
state x(¢) when we designed our controllers.

— Most often all of this information is not available.

— And certainly there is usually error in our knowledge of x.

e Usually can only feedback information that is developed from the sen-
sors measurements.

— Could try “output feedback” u=Kx = u= Ky
— But this is type of controller is hard to design.

e Alternative approach: Develop a replica of the dynamic system that
provides an “estimate” of the system states based on the measured
output of the system.

e New plan: called a “separation principle”
1. Develop estimate of x(t), called x(?).

2. Then switch from u = —Kx(t) to u = —Kx(t).

e Two key questions:
— How do we find x()7

— Will this new plan work? (yes, and very well)
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e Assume that the system model is of the form:

x = Ax+ Bu, x(0) unknown
y = C)x
where

— A, B, and C,, are known — possibly time-varying, but that is sup-
pressed here.

—u(t) is known
— Measurable outputs are y(t) from C), # I

e Goal: Develop a dynamic system whose state
x(t) =x(t) Vt >0

Two primary approaches:
— Open-loop.
— Closed-loop.

June 18, 2008
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e Given that we know the plant matrices and the inputs, we can just

perform a simulation that runs in parallel with the system
x(t) = A% + Bu(t)
— Then x(t) = x(t) V t provided that x(0) = x(0)

System A B Cy

Observer A B Cy

e To analyze this case, start with:

x(t) = Ax(t)+ Bu(t)
x(t) = Ax(t)+ Bu(t)

e Define the estimation error: x(t) = x(t) — x(¢).
— Now want X(t) = 0 V ¢, but is this realistic?

e Major Problem: We do not know x(0)

June 18, 2008
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e Subtract to get:

d . . g -
%<X_X) =Alx—x%x) = x(t)=Ax

which has the solution
%(t) = e2'%(0)

— Gives the estimation error in terms of the initial error.

e Does this guarantee that x =0 V ¢7?
Or even that x — 0 as t — oo? (which is a more realistic goal).

— Response is fine if X(0) = 0. But what if x(0) # 07?

o If Astable, thenx — 0 ast — o0, but the dynamics of the estimation
error are completely determined by the open-loop dynamics of the
system (eigenvalues of A).

— Could be very slow.

— No obvious way to modify the estimation error dynamics.

e Open-loop estimation is not a very good idea.
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e Obvious fix to problem: use the additional information available:

— How well does the estimated output match the measured output?
Compare: y = C)x with y=C)x
—Thenformy =y -y =C,x

System A, B.C, y(t)
— x(t) B
u(t)

Observer A,B,C), y(t)
— X(t)

e Approach: Feedback y to improve our estimate of the state. Basic
form of the estimator is:

x(t) = Ax(t)+ Bu(t) +|Ly ()
y(t) = Cyx(t)

where L is a user selectable gain matrix.

e Analysis:

X=%—X = |[Ax+ Bu| — [AXx+ Bu+ L(y — y)|
= A(x—x) — L(Cx — Cyx)
— Ax— LOx = (A— LC))%

June 18, 2008
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e So the closed-loop estimation error dynamics are now

x = (A — LC,)x with solution X(t) = e~ F%W x(0)

e Bottom line: Can select the gain L to attempt to improve the
convergence of the estimation error (and/or speed it up).

— But now must worry about observability of the system [A, C].

e Note the similarity:
— Regulator Problem: pick K for A— BK
& Choose K € R (SISO) such that the closed-loop poles

det(s] — A+ BK) = ®.(s)

are in the desired locations.
— Estimator Problem: pick L for A — LC),
& Choose L € R™ ! (SISO) such that the closed-loop poles

det(s] — A+ LC,) = D,(s)

are in the desired locations.

e These problems are obviously very similar — in fact they are called
dual problems

— Note: poles of (A — LC,) and (A — LC,)" are identical.

— Also have that (A — LC,)" = A" — C/ L"

— So designing L’ for this transposed system looks like a standard
regulator problem (A — BK') where

A = AT
B = (Jg
K = L7

June 18, 2008
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e Simple system (see page 11-23)

[ —1 1.5
1 =2
C,=[10], D=0

A —

— Assume that the initial conditions are not well known.
— System stable, but A\ (A) = —0.18
— Test observability:

k[ C’y ] . 1 0
ran — ran
C,A —1 15

Use open and closed-loop estimators. Since the initial conditions are

not well known, use x(0) = [ 8 ]

Open-loop estimator:

= Ax + Bu
= C)x

M-
|

<>
|

Closed-loop estimator:

A

X = Ax+ Bu+ Ly =Ax+ Bu+ L(y — y)
= (A-LCy)x+ Bu+ Ly
y = C)x
— Dynamic system with poles \;(A — LC,) that takes the measured
plant outputs as an input and generates an estimate of x.

— Use place command to set closed-loop pole locations

June 18, 2008
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e Typically simulate both systems together for simplicity

e Open-loop case:

x = Ax+ Bu
y Cyx
X Ax + Bu
y = Cx

N x| _ A 0| [x N B I x(0)
x| |oAallx B ’ x(0)
HEIH
y 0G| LX

e Closed-loop case:
= Ax + Bu

x = (A—-LCy)x+ Bu+ LC/x
N x B X+ B
x| X B

e Example uses a strong u(t) to shake things up

A 0
LC, A-LC,

June 18, 2008
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Figure 11.2: Closed-loop estimator. Convergence looks much better.
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Estimator Poles?

e Location heuristics for poles still apply — use Bessel, ITAE, ...

— Main difference: probably want to make the estimator faster than
you intend to make the regulator — should enhance the control,
which is based on x(%).

— ROT: Factor of 2-3 in the time constant (w,, associated with the
regulator poles.

e Note: When designing a regulator, were concerned with “bandwidth”
of the control getting too high = often results in control commands
that saturate the actuators and/or change rapidly.

e Different concerns for the estimator:
— Loop closed inside computer, so saturation not a problem.

— However, the measurements y are often “noisy”’, and we need to
be careful how we use them to develop our state estimates.

= High bandwidth estimators tend to accentuate the effect of sens-
ing noise in the estimate.

— State estimates tend to “track” the measurements, which are fluc-
tuating randomly due to the noise.

= Low bandwidth estimators have lower gains and tend to rely more
heavily on the plant model

— Essentially an open-loop estimator — tends to ignore the measure-
ments and just uses the plant model.

June 18, 2008
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Optimal Estimator

e Can also develop an optimal estimator for this type of system.

— Given duality of regulator and estimator, would expect to see close
connection between optimal estimator and regulator (LQR)

o Key step is to balance the effect of the various types of random noise
in the system on the estimator:

X = Ax+ Bu+ B,w
y = C)x+v
— w: “process noise” — models uncertainty in the system model.

— v: “sensor noise” — models uncertainty in the measurements.

e Typically assume that w(t) and v(t) are zero mean E[w(¢)] = 0 and

— Uncorrelated Gaussian white random noises: no correlation between
the noise at one time instant and another

Elw(t)w(t2)'] =Ryw(t1)d(t1 —ta) = w(t) ~ N(0, Ryy)
E{V(tl)V(tQ)T] :RVV(t1)5(t1 — tg) = V( ) N(O va)
E[W(tl)V(tQ)T} =0

107F

I I I I I I I
-20 -15 -10 -5 0 5 10 15 20
X

Figure 11.3: Example of impact of covariance = ¢ on the distribution of the PDF
— wide distribution corresponds to large uncertainty in the variable

June 18, 2008



e With noise in the system, the model is of the form:
x=Ax+DBu+B,w, y=0Cx+vV
— And the estimator is of the form:

x=Ax+Bu+Lly-y), y=Cx

e Analysis: in this case:

X = X—% = [Ax + Bu+ B,w| — [Ax+ Bu+ L(y — y)]

= Alx—x)—- L(C,x—C/x)+ By,w — Lv

= Ax - LCx+ B,w — Lv

= (A= LC)X + Byw — Lv (11.18)

e This equation of the estimation error explicitly shows the conflict in
the estimator design process. Must balance between:

— Speed of the estimator decay rate, which is governed by
Re[\i(A — LC))]

— Impact of the sensing noise v through the gain L

e Fast state reconstruction requires rapid decay rate — typically requires
a large L, but that tends to magnify the effect of v on the estimation
process.

— The effect of the process noise is always there, but the choice of L
will tend to mitigate/accentuate the effect of v on x(%).

e Kalman Filter needs to provide an optimal balance between the
two conflicting problems for a given “size” of the process and sensing
noises.

June 18, 2008
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Optimization

e Note that Eq. 11.18 is of the form of a linear time-varying system
driven by white Gaussian noise

— Can predict the mean square value of the state (estimation error
in this case) Q(t) = E[x(t)x(t)'] over time using Q(0) = Qp and

Qt) =[A-LC,JQM) +Qt)[A— LC,)"
B
T
[ ]

Ryw 0
+[ By, —L]
—[A—LC,)) Q(t)+ Q(t) [A — LC,)" + ByRywBl + LR LT

0 Ry

— Called a matrix differential Lyapunov Equation'®

e Note that ideally would like to minimize Q)(¢) or trace )(t), but that
is difficult to do & describe easily!".

e Instead, consider option of trying to minimize trace Q( ), the argu-
ment being that then fo trace Q(7)dr is small.
— Not quite right, but good enough to develop some insights

e To proceed note that

0 B 0 T~T AT1 _ AT pT
a—Xtrace[AXB] = a—XtraCe[B XA ] = A" B
and 9
a—Xtrace[AXBXTC’] = A'C'XB" + CAXB

e So for minimum we require that

0 _ T AT
aLtrace Q= —20Q C, +2LRy, =0

which implies that
L=Q(t)C, Ry,

16See K+8S, chapter 1.11 for details.

17My 16.324 discuss how to pose the problem in discrete time and then let At — 0 to recover the continuous time results.
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e Note that if we use this expression for L in the original differential
Lyapunov Equation, we obtain:

Qt) =[A-LC,JQ1Ht) +Q1t)[A - LC,)" + ByRywBL + LR, L*

— [A— Q)CTR;IC,] Q(t) + Q(t) [A - Q)CT RS C,]
+BwRWWBZ; + Q(t>CgTR\TVlRVV(Q(t)CgTR;Vl)T

= AQ(t) + Q(t) A" = 2Q(t)C) R,/ C,Q(t) + ByRyw By,
+Q(t)C) R C,Q(t)

Q) = AQ(t) + QA" + ByRww By, — Q(t)Cy R C,Q(t)

which is obviously a matrix differential Riccati equation.

June 18, 2008
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Goal: develop an estimator x(¢) which is a linear function of the
measurements y(7) (0 < 7 < t) and minimizes the function

J = trace(Q(t))
Qt) = B [{x(t) = x(t)}{x(t) - x(t)}"]

which is the covariance for the estimation error.

Solution: is a closed-loop estimator '
x(t) = Ax + L(t)(y () — Cx(t))
where L(t) = Q(t)C; Ry} and Q(t) > 0 solves

Q(t) = AQ(t) + Q()A" + By Rww B, — Q(1)Cy R C,Q(1)

— Note that 2(0) and Q(0) are known
— Differential equation for ()(¢) solved forward in time.

— Filter form of the differential matrix Riccati equation for the
error covariance.

— Note that the AQ(t) + Q(t)AT ... is different than with the regu-
lator which had P(t)A + AT P(t). ..

Called Kalman-Bucy Filter - linear quadratic estimator (LQE)

183ee OCW notes for 16.322 “Stochastic Estimation and Control” for the details of this derivation.

June 18, 2008
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Note that an increase in Q)(t) corresponds to increased uncertainty
in the state estimate. ()(¢) has several contributions:

— AQ(t) + Q(t) A is the homogeneous part
— BwRWWBZ; increase due to the process measurements
—Q(t)C R/ C,Q(t) decrease due to measurements

e The estimator gain is L(t) = Q(t)C, R,
— Feedback on the innovation, y — y
— If the uncertainty about the state is high, then Q(¢) is large, and
so the innovation y — C,% is weighted heavily (L T)

— If the measurements are very accurate R, |, then the measure-
ments are heavily weighted

June 18, 2008
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e Assume that ?
1. Ryy >0, Ryw >0

2. All plant dynamics are constant in time
3. [A, C}] detectable
4. |A, B, stabilizable

e Then, as with the LQR problem, the covariance of the LQE quickly
settles down to a constant (), independent of Q)(0), as t — oo where

AQSS + QSSAT + Bwang — stogR;vlonss =0

— Stabilizable/detectable gives a unique Qs > 0
— Qs > 0iff [A, B, controllable
— L = stCng_Vl

o If (), exists, the steady state filter

x(t) = Ax+ L(y(t) — C,x(t))
— (A — LyC)%(t) + Lyy(t)

is asymptotically stable iff (1)—(4) above hold.

19Compare this with 4-10
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e Given that x = (A — LC,)x + Ly

e Consider a scalar system, and take the Laplace transform of both sides

to get:
X(s) L
Y(s) sI—(A-LC)

e This is the transfer function from the “measurement” to the “esti-

mated state”
— It looks like a low-pass filter.

e Clearly, by lowering Ry, and thus increasing L, we are pushing out

the pole.
— DC gain asymptotes to 1/C), as L — oo

Scalar TF from Y to \hat X for larger L

T T T T

T T

Increasing L

Ihat X /Y|

_
O‘
T

10_ n 1 n 1 n 1y n 1y n 1y 111y
= 0 1 2 3 5 6
10 10 10 10 10

Freq (rad/sec)
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e Lightly Damped Harmonic Oscillator

BRI IEESE

and y = x1 + v, where Ry =1 and Ry, = 7.

— Can sense the position state of the oscillator, but want to develop
an estimator to reconstruct the velocity state.

e Symmetric root locus exists for the optimal estimator. Can find
location of the optimal poles using a SRL based on the TF

-1
s —1 0 1 N(s)
Gyu(s) =110 = =
wls) =10 Lg S ] Rz
— SRL for the closed-loop poles \;(A — LC') of the estimator which
are the LHP roots of:

RWW
RVV

— Pick sign to ensure that there are no poles on the jw-axis (other

D(s)D(—s) £ N(s)N(—=s) =0

than for a gain of zero)

— So we must find the LHP roots of
1 1
[s° +wi] [(—9)” +wi] + - = (s* +wp)” + —=0

Symmetric root locus
15 T T T T T T T T T

Real Axis
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e Note that as » — 0 (clean sensor), the estimator poles tend to oo
along the £45 deg asymptotes, so the poles are approximately

o =y 2 2
s~ ZN D(s) =8+ —=s+-=0
VT

Vrooor

e (Can use these estimate pole locations in acker, to get that

0 1 -
el B
—w? 0 r CA 1

e aAlRINEE AN

e Given L, A, and C, we can develop the estimator transfer function
from the measurement y to the 25

2 0 1

R s
5_[01]<S]_[—w30 + %fwgl[u)}) [%_fu%]
[ 2 171t 2
UL
L 5 r T
[ s 1 2 1
= [0 1] =2 g4 2 lz_ﬁuﬂ 24 2g 42
| Jr r 0 NG r
B f\%—i—(s—i—\i—n)(%—w%) s — \/Tw]
B 52+%3+% 32+\3;3+%

o Filter zero asymptotes to s = 0 as » — 0 and the two poles — oo
e Resulting estimator looks like a “band-limited” differentiator.
— Expected because we measure position and want to estimate veloc-
ity.
— Frequency band over which filter performs differentiation deter-
mined by the “relative cleanliness” of the measurements.
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Figure 11.4: Bandlimited differentiation of the position measurement from LQE:
r=10"2 r=10"% r=10"% and r = 1078
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Final Thoughts

e Note that the feedback gain L in the estimator only stabilizes the
estimation error.

— If the system is unstable, then the state estimates will also go to
00, with zero error from the actual states.

e Estimation is an important concept of its own.
— Not always just “part of the control system”

— Critical issue for guidance and navigation system

e More complete discussion requires that we study stochastic processes
and optimization theory.

e Estimation is all about which do you trust more: your
measurements or your model.

e Strong duality between LQR and LQE problems

A < AT
B C'yT
C., Bl
R, < Ry
Ruw < Ry
K(t) <« L'(ty—1)
Plt) = Qlt;—t)

June 18, 2008



Spr 2008

16.323 11-23

Basic Estimator (exampl.m) (See page 11-7)

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

51

% Examples of estimator performance

% Jonathan How, MIT

% 16.333 Fall 2005

%

% plant dynamics

%

a=[-1 1.5;1 -2];b=[1 0]’;c=[1 0];d=0;

%

% estimator gain calc

%

l=place(a’,c’,[-3 -4]);1=1"

%

% plant initial cond

xo=[-.5;-1];

% extimator initial cond

xe=[0 0]’;

t=[0:.1:10];

%

% inputs

%

u=0;u=[ones(15,1) ;-ones(15,1) ;ones(15,1) /2;-ones(15,1) /2;zeros(41,1)];
%
% open-loop extimator

%

A_ol=[a zeros(size(a));zeros(size(a)) al;
B_ol=[b;b];

C_ol=[c zeros(size(c)) ;zeros(size(c)) cl;
D_ol=zeros(2,1);

%

% closed-loop extimator

%

A_cl=[a zeros(size(a));l*c a-1*c];B_cl=[b;b];
C_cl=[c zeros(size(c));zeros(size(c)) cl;D_cl=zeros(2,1);

[y_cl,x_cll=1sim(A_c1,B_cl,C_cl,D_cl,u,t, [xo;xel);
[y_ol,x_0l]l=1sim(A_ol,B_o0l,C_ol,D_ol,u,t, [x0;xel);

figure (1) ;clf;subplot(211)

plot(t,x_cl(:,[1 2]),t,x_cl(:,[3 4]),’--’,’LineWidth’,2);axis([0 4 -1 1]);
title(’Closed-loop estimator’);ylabel(’states’);xlabel(’time’)
text(.25,-.4,°x_1%);text(.5,-.55,’x_2") ;subplot(212)

plot(t,x_cl(:,[1 2])-x_cl(:,[3 4]),’LineWidth’,2)

J%setlines;

axis([0 4 -1 1]);grid on

ylabel(’estimation error’);xlabel(’time’)

figure(2);clf;subplot(211)

plot(t,x_o1(:,[1 2]),t,x_01(:,[3 4]),’--’,’LineWidth’,2);axis([0 4 -1 1])
title(’Open loop estimator’);ylabel(’states’);xlabel(’time’)
text(.25,-.4,°x_1%);text(.5,-.55,’x_2") ;subplot(212)

plot(t,x_ol(:,[1 2])-x_ol(:,[3 4]),’LineWidth’,2)

%setlines;

axis([0 4 -1 1]);grid on

ylabel(’estimation error’);xlabel(’time’)

print -depsc -f1 estll.eps; jpdf(’estll’)
print -depsc -f2 estl2.eps; jpdf(’est12’)
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Filter Interpretation

% Simple LQE example showing SRL
% 16.323 Spring 2007

% Jonathan How

%

a=[0 1;-4 0];

c=[1 0]; % pos sensor

c2=[0 1]; % vel state out
f=logspace(-4,4,800) ;

© 0 N e U A W N e

10 r=le-2;

11 1=polyvalm([1 2/sqrt(r) 2/r],a)*inv([c;c*al)*[0 1]°

12 [nn,dd]=ss2tf(a-1*c,1,c2,0); % to the vel estimate

13 g=freqresp(nn,dd,f*j);

14 [r roots(nn)]

15 figure(1)

16 subplot(211)

17 fl=f;gl=g;

18 loglog(f,abs(g))

19 %hold on;fill([5e2 5e2 1e3 1e3 5e2]’,[le4 le-4 le-4 le4 le4]’,’c’);hold off
20 xlabel(’Freq (rad/sec)’)

21 ylabel(’Mag’)

22 title([’Vel sens to Pos state, sen noise r=’,num2str(r)])
23 axis([le-3 1e3 1le-4 1le4])

24  subplot(212)

25  semilogx(f,unwrap(angle(g))*180/pi)

26 xlabel(’Freq (rad/sec)’)

27  ylabel(’Phase (deg)’)

28 axis([1le-3 1e3 0 200])

30 figure(2)

31 r=1e-4;

32 l=polyvalm([1 2/sqrt(r) 2/r],a)*inv([c;c*al)*[0 1]’

33 [nn,dd]=ss2tf(a-1*c,1,c2,0); % to the vel estimate

34 g=freqresp(nn,dd,f*j);

35 [r roots(nn)]

36  subplot(211)

37 f2=f;g2=g;

38 loglog(f,abs(g))

39 %hold on;fill([5e2 5e2 1e3 1e3 5e2]’,[led le-4 le-4 1ed 1le4]’,’c’);hold off
40 xlabel(’Freq (rad/sec)’)

41 ylabel(’Mag’)

12 title([’Vel sens to Pos state, sen noise r=’,num2str(r)])
43 axis([le-3 1e3 le-4 1le4l)

44  subplot(212)

45  semilogx(f,unwrap(angle(g))*180/pi)

46  xlabel(’Freq (rad/sec)’)

47 ylabel(’Phase (deg)’)

48  Y%bode(nn,dd);

49  axis([1e-3 1e3 0 200])

50

51 figure(3)

52 r=le-6;

53 l=polyvalm([1 2/sqrt(r) 2/r],a)*inv([c;c*al)=*[0 1]’

54 [nn,dd]=ss2tf(a-1*c,1,c2,0); % to the vel estimate

55 g=freqresp(nn,dd,f*j);

56 [r roots(nn)]

57  subplot(211)

58 £3=f;g3=g;

50 loglog(f,abs(g))

60  %hold on;fill([5e2 5e2 1e3 1e3 5e2]’,[led le-4 le-4 1ed 1e4]’,’c’);hold off
61 xlabel(’Freq (rad/sec)’)

62 ylabel(’Mag’)

63 title([’Vel sens to Pos state, sen noise r=’,num2str(r)])
64 axis([le-3 1e3 le-4 1e4])

65  subplot(212)

66 semilogx(f,unwrap(angle(g))*180/pi)

67 xlabel(’Freq (rad/sec)’)
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68 ylabel(’Phase (deg)’)

69  Y%bode(nn,dd);

70  title([’Vel sens to Pos state, sen noise r=’,num2str(r)])

71 axis([le-3 1e3 0 200])

72

73 figure(4)

74 r=1le-8;

75 l=polyvalm([1 2/sqrt(r) 2/r],a)*inv([c;c*al)*[0 1]’

76 [nn,dd]=ss2tf(a-1*c,1,c2,0); % to the vel estimate

77 g=freqresp(nn,dd,f*j);

78 [r roots(nn)]

79 fd=f;gld=g;

so  subplot(211)

81 loglog(f,abs(g))

s2  %hold on;fill([5e2 5e2 1le3 1e3 5e2]’,[led le-4 le-4 led led]’,’c’);hold off
83 xlabel(’Freq (rad/sec)’)

84 ylabel(’Mag’)

85 title([’Vel sens to Pos state, sen noise r=’,num2str(r)])

86 axis([le-3 1e3 le-4 1le4d])

s7 title([’Vel sens to Pos state, sen noise r=’,num2str(r)])

88  subplot(212)

89 semilogx(f,unwrap(angle(g))*180/pi)

90 xlabel(’Freq (rad/sec)’)

91 ylabel(’Phase (deg)’)

92  ¥%bode(nn,dd);

93 axis([1le-3 1e3 0 200])

94

95  print -depsc -f1 filtl.eps; jpdf (°filt1l’)

96 print -depsc -f2 filt2.eps;jpdf(*£filt2’)

97 print -depsc -f3 filt3.eps;jpdf (’£ilt3’)

98 print -depsc -f4 filtd.eps;jpdf (’£ilt4’)

99

100 figure(5);clf

101 %subplot(211)

102 loglog(fl,abs(gl),f2,abs(g2),£3,abs(g3),f4,abs(gd), ’Linewidth’,2)
103 %hold on;fill([5e2 5e2 1e3 1e3 5e2]’,[1ed4 1le-4 1le-4 1ed 1e4]’,’c’);hold off
104 xlabel(’Freq (rad/sec)’)

105 ylabel(’Mag’)

106 title([’Vel sens to Pos state, sen noise r=’,num2str(r)])

107 axis([le-4 le4 le-4 1ed])

108 title([’Vel sens to Pos state, sen noise r=’,num2str(r)])

109 legend(’r=10"{-2}’,’r=10"{-4}’,’r=10"{-6}’,’r=10"{-8}’, ’Location’, ’NorthWest’)
110  %subplot(212)

111 figure(6);clf

112 semilogx(f1,unwrap(angle(gl))*180/pi,f2,unwrap(angle(g2))*180/pi,...
113 £3,unwrap(angle(g3))*180/pi,f4,unwrap(angle(g4))*180/pi, ’Linewidth’,2) ;hold off
114 xlabel(’Freq (rad/sec)’)

115 ylabel(’Phase (deg)’)

116 legend(’r=10"{-2}’,’r=10"{-4}’,’r=10"{-6}’,’r=10"{-8}’)

117 %bode(nn,dd);

118 axis([le-4 1le4 0 200])

119 print -depsc -f5 filt5.eps; jpdf(’£filt5’)

120 print -depsc -f6 filt6.eps;jpdf (*£filt6’)
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