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16.323 Lecture 10 

Singular Arcs 

•	 Bryson Chapter 8 
Kirk Section 5.6 • 
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Singular Problems


There are occasions when the PMP 

u �(t) = arg min H(x, u, p, t) 
u(t)∈U


fails to define u�(t) can an extremal control still exist?
⇒ 
– Typically occurs when the Hamiltonian is linear in the control, and 

the coefficient of the control term equals zero. 

•	 Example: on page 9-10 we wrote the control law: ⎧ ⎨ −um b < p2(t) 
u(t) = ⎩ 

0 −b < p2(t) < b 
um p2(t) < −b 

but we do not know what happens if p2 = b for an interval of time. 
– Called a singular arc. 

– Bottom line is that the straightforward solution approach does not 
work, and we need to investigate the PMP conditions in more detail. 

•	 Key point: depending on the system and the cost, singular arcs might 
exist, and we must determine their existence to fully characterize the 
set of possible control solutions. 

•	 Note: control on the singular arc is determined by the requirements 
that the coefficient of the linear control terms in Hu remain zero on 
the singular arc and so must the time derivatives of Hu. 
– Necessary condition for scalar u can be stated as 

∂ d2k 

(−1)k 

∂u dt2k 
Hu ≥ 0 k = 0, 1, 2 . . . 
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•	 With ẋ = u, x(0) = 1 and 0 ≤ u(t) ≤ 4, consider objective �	 2 

min (x(t) − t2)2dt 
0 

First form standard Hamiltonian • 

H = (x(t) − t2)2 + p(t)u(t) 

which gives Hu = p(t) and 

ṗ(t) = −Hx = −2(x − t2), with p(2) = 0 (10.15) 

•	 Note that if p(t) > 0, then PMP indicates that we should take the 
minimum possible value of u(t) = 0. 
– Similarly, if p(t) < 0, we should take u(t) = 4. 

•	 Question: can we get that Hu ≡ 0 for some interval of time? 
– Note: Hu ≡ 0 implies p(t) ≡ 0, which means ṗ(t) ≡ 0, and thus 

ṗ(t) ≡ 0 ⇒ x(t) = t2 , u(t) = ẋ = 2t 

•	 Thus we get the control law that ⎧ ⎨ 0 p(t) > 0 
u(t) = 2t when p(t) = 0 ⎩ 

4 p(t) < 0 
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•	 Can show by contradiction that optimal solution has x(t) ≥ t2 for 
t ∈ [0, 2]. 
– And thus we know that ṗ(t) ≤ 0 for t ∈ [0, 2] 

– But p(2) = 0 and ṗ(t) ≤ 0 imply that p(t) ≥ 0 for t ∈ [0, 2] 

•	 So there must be a point in time k ∈ [0, 2] after which p(t) = 0 (some 
steps skipped here...) 
– Check options: k = 0? contradiction ⇒ 

– Check options: k = 2? contradiction ⇒ 

So must have 0 < k < 2. How find it? Control law will be 

u(t) =	
0 when 0 ≤ t < k 
2t k ≤ t < 2 

apply this control to the state equations and get: 

x(t) = 
t

1 
2 + (1 − k2) 

when 
k 
0 ≤
≤ 
t

t 
≤
≤ 
k 
2 

To find k, note that must have p(t) ≡ 0 for t ∈ [k, 2], so in this time 
range 

ṗ(t) ≡ 0 = −2(1 − k2) ⇒ k = 1 

– So now both u(t) and x(t) are known, and the optimal solution is 
to “bang off” and then follow a singular arc. 
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•	 LTI system, x1(0), x2(0), tf given; x1(tf ) = x2(tf ) = 0 

0 1 1 
A = B = 

0 0 −1 

tf 

and J = 1
2 x1

2dt (see Bryson and Ho, p. 248)

0


•	 So H = 1 x1(t)
2 + p1(t)x2(t) + p1(t)u(t) − p2(t)u(t)2

⇒ ṗ1(t) = −x1(t), ṗ2(t) = −p1(t) 

•	 For a singular arc, we must have Hu = 0 for a finite time interval 

Hu = p1(t) − p2(t) = 0? 

•	 Thus, during that interval 

d 
Hu = ṗ1(t) − ṗ2(t)

dt 
= −x1(t) + p1(t) = 0 

•	 Note that H is not an explicit function of time, so H is a constant 
for all time 

H =
1 
x1(t)

2 + p1(t)x2(t) + [p1(t) − p2(t)] u(t) = C 
2 

but can now substitute from above along the singular arc 

1 
x1(t)

2 + x1(t)x2(t) = C 
2 

which gives a family of singular arcs in the state x1, x2 

•	 To find the appropriate control to stay on the arc, use 

d2 

dt2 
(Hu) = −ẋ1 + ṗ1 = −(x2(t) + u(t)) − x1(t) = 0 

or that u(t) = −(x1(t) + x2(t)) which is a linear feedback law to use 
along the singular arc. 
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• Consider the min time-fuel problem for the general system 

ẋ = Ax + Bu 

with M− ≤ ui ≤ M+ and
� tf m


J = (1 + ci|ui|)dt 
0 i=1


tf is free and we want to drive the state to the origin


• We studied this case before, and showed that 
m

H = 1 + (ci|ui| + p TBiui) + p TAx 
i=1 

• On a singular arc, 
dt
dk

k (Hu) = 0 ⇒ coefficient of u in H is zero 

⇒ p T (t)Bi = ±ci 
for non-zero period of time and � �T


dk 

(p T (t)Bi) = 
dkp(t) 

Bi = 0 ∀ k ≥ 1

dtk	 dtk 

•	 Recall the necessary conditions ṗT = −Hx = −pTA, which imply 

p̈T = −ṗTA = p TA2 

... 
pT = −p̈TA = −p TA3 

...� �T
dkp(t) ≡ (−1)k p TAk 

dtk 

and combining with the above gives � �T 
dkp(t) 

Bi = (−1)k p TAkBi = 0 
dtk 
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•	 Rewriting these equations yields the conditions that 

p TABi = 0, p TA2Bi = 0, · · · 

⇒ p TA Bi ABi · · · An−1Bi = 0 

•	 There are three ways to get: 

p TA Bi ABi An−1Bi = 0 · · · 

On a singular arc, we know that p(t) = 0 so this does not cause the 
condition to be zero. 

•	 What if A singular, and p(t)TA = 0 on the arc? 
– Then ṗT = −pTA = 0. In this case, p(t) is constant over [t0, tf ] 

– Indicates that if the problem is singular at any time, it is singular 
for all time. 

– This also indicates that u is a constant. 

– A possible case, but would be unusual since it is very restrictive set 
of control inputs. 

•	 Third possibility is that Bi ABi · · · An−1Bi is singular, meaning 
that the system is not controllable by the individual control inputs. 
– Very likely scenario – most common cause of singularity conditions. 

– Lack of controllability by a control input does not necessarily mean 
that a singular arc has to exist, but it is a possibility. 
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• For Min Time problems, now ci = 0, so things are a bit different 

•	 In this case the switchings are at pTBi = 0 and a similar analysis as 
before gives the condition that 

p T Bi ABi An−1Bi = 0 · · · 

•	 Now there are only 2 possibilities 
– p = 0 is one, but in that case, 

H	= 1 + p T (Ax + Bu) = 1 

but we would expect that H = 0 

– Second condition is obviously the lack of controllability again. 

•	 Summary (Min time): 
– If the system is completely controllable by Bi, then ui can have no 

singular intervals 

– Not shown, but if the system is not completely controllable by Bi, 
then ui must have a singular interval. 

•	 Summary (Min time-fuel): 
– If the system is completely controllable by Bi and A is non-singular, 

then there can be no singular intervals 
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•	 Consider systems that are nonlinear in the state, but linear in the 
control 

ẋ(t) = a(x(t)) + b(x(t))u(t) 

with cost	 � tf 

J = g(x(t))dt 
t0 

•	 For a singular arc, in general you will find that 

dk 

dtk 
(Hui

) = 0 k = 0, . . . , r − 1 

but these conditions provide no indication of the control required to 
keep the system on the singular arc 
– i.e. the coefficient of the control terms is zero. 

But then for some r and i, dt
dr

r (Hui
) = 0 does retain ui.• 

– So if uj(x, p) are the other control inputs, then 

dr 
(Hui

) = C(x, p, uj(x, p)) + D(x, p, uj(x, p))ui = 0 
dtr


with D = 0, so the condition does depend on ui.


•	 Then can define the appropriate control law to stay on the singular 
arc as 

C(x, p, uj(x, p, )) 
ui = −

D(x, p, uj(x, p, )) 
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• Properties of this solution are: 
– r ≥ 2 is even 

– Singular surface of dimension 2n − r in space of (x, p) in general, 
but 2n − r − 1 if tf is free (additional constraint that H(t) = 0) 

– Additional necessary condition for the singular arc to be extremal is 
that: � � 

∂ dr 
(−1)r/2 Hu ≥ 0 

∂ui dtr 

– Note that in the example above, 

∂ dr 
Hu ∼ D 

∂ui dtr 
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•	 Goddard problem: thrust program for maximum altitude of a sounding 
rocket [Bryson and Ho, p. 253]. Given the EOM: 

1 
v̇ = [F (t) − D(v, h)] − g 

m 
ḣ = v 

−F (t) 
ṁ	 = 

c 

where g is a constant, and drag model is D(v, h) = 1
2ρv

2CdSe
−βh 

•	 Problem: Find 0 ≤ F (t) ≤ Fmax to maximize h(tf ) with v(0) = 
h(0) = 0 and m(0),m(tf ) are given 

The Hamiltonian is •


1	 F (t)
H = p1 [F (t) − D(v, h)] − g + p2v − p3 

m c 

and since v(tf ) is not specified and we are maximizing h(tf ), 

p2(tf ) = −1 p1(tf ) = 0 

– Note that H(t) = 0 since the final time is not specified. 

The costate EOM are: •
 ⎤⎡ 
1 ∂D 
m ∂v −1 0 
1 ∂D 

⎢⎢⎣

⎥⎥⎦
ṗ =
 0 0
 p


m ∂h


F −
2 
D 0 0 

m

•	 H is linear in the controls, and the minimum is found by minimizing 
(pm 

1 − pc 
3 )F (t), which clearly has 3 possible solutions: 

F = Fmax (pm 
1 − pc 

3 ) < 0 
0 < F < Fmax if (pm 

1 − pc 
3 ) = 0 

F = 0 (pm 
1 − pc 

3 ) > 0 

– Middle expression corresponds to a singular arc. 
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•	 Note: on a singular arc, must have Hu = p1c − p3m = 0 for finite 
interval, so then Ḣu = 0 and Ḧ 

u = 0, which means 

∂D D 
+ p1 − mp2 = 0 

∂v c 

and 
m 

F = D + mg + (10.16) 
D + 2c∂D + c2 ∂2D 

· � ∂v ∂v2 � 
∂D	 ∂D ∂2D −g(D + c ) + c(c − v) 

∂h 
− vc 2 

∂v	 ∂v∂h 

which is a nonlinear feedback control law for thrust on a singular arc. 
– For this particular drag model, the feedback law simplifies to: 

mg 
� 
βc2 � v � c 

� 

F = D + mg + 
1 + 4(c/v) + 2(c/v)2 g 

1 + 
c 
− 1 − 2 

v 

and the singular surface is: mg = 1 + vc D 

•	 Constraints H(t) = 0, Hu = 0, and Ḣu = 0 provide a condition that 
defines a surface for the singular arc in v, h,m space: 

v ∂D 
D + mg − D − v = 0	 (10.17) 

c ∂v 

•	 It can then be shown that the solution typically consists of 3 arcs: 
1.	F = Fmax until 10.17 is satisfied. 
2. Follow singular arc using 10.16 feedback law until m(t) = m(tf ). 
3. F = 0 until v = 0.

which is of the form “bang-singular-bang”
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Figure 10.1: Goddard Problem 
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Figure 10.2: Goddard Problem 
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Figure 10.3: Goddard Problem
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