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16.323	 Handout #6 
Prof. J. P. How	 April 25, 2008 

Due: May 8, 2008 

16.323 Homework Assignment #6 

1. Finish 4(b) and 4(c) of Homework #5. 

2. (total 15pts) Find the control input u(t) sequence that minimizes the cost functional 

J = −y(tf ) 

subject to the state constraints 

ẏ(t) = y(t)u(t) − y(t) − u 2(t) 

for an initial condition y(0) = 2 and final time tf = 5. Give both the control, the state 
response, and the costate. 

3. Given the plant dynamics, 

ẋ1(t) = x2(t) 

ẋ2(t) = x1(t) + u(t) + w(t) 

y(t) = x2(t) + v(t) 

and cost function, 

1 tf 

J = E (3x1
2(t) + 3x2

2(t) + u 2(t))dt 
2 0 

where w(t) ∼ N (0, 4) and v(t) ∼ N (0, 0.5) are Gaussian, white noises and tf = 15. 

(a) Numerically integrate the Riccati equations for LQR and the LQE to find the 
time-varying regulator and estimator gains. 

(b) The full stochastic linear optimal output feedback problem involves using u(t) = 
−Kx̂(t). For this control policy, the compensator is of the form, 

ẋc(t) = Acxc(t) + Bcy(t) (1) 

u(t) = −Ccxc(t) (2) 

For this example, write down the dynamic equations for the combined plant and 
x 

compensator system . Simulate the full closed-loop system in MATLAB using 
xc 

10 0 
the gains found in Part (a) and the initial conditions, x0 = and x̂0 = . −10 0 
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(c) Show that the eigenvalues of the closed-loop dynamics are equal to those of the 
steady-state regulator and estimator. Compare the performance of the compen­
sator in Part (b) to the performance you obtain when you use these steady state 
values of the regulator and estimator gains. 

(d) Find the steady-state mean-squared values of the regulator and estimator (x1(t), 
x2(t), x̂1(t) and x̂2(t)). 

4. Given a system with a state space representation, 

ẋ(t) = Ax(t) + Buu(t) (3) 

y(t) = Cyx(t) (4) 

we have investigated various types of observer-based controllers that can be written as 

ż(t) = Az(t) + Buu(t) + Hr(t) (5) 

u(t) = −Gz(t) (6) 

where r(t) is the residual signal [r(t) = y(t) − Cyz(t)] and the state vectors x and z 
have the same size. Assume that we have selected H and G so that the closed-loop 
system is stable. We can modify the original compensator in Eqs. 5–6 to obtain a very 
general form for the compensator: 

ż(t) = Az(t) + Buu(t) + Hr(t) Original Comp dynamics (7) 

ẇ(t) = Fw(t) + Qr(t) Other stable dynamics (8) 

u(t) = −Gz(t) + Pw(t) (9) 

so that the residual is filtered by another set of stable dynamics and then added to 
the control signal. The dimension (k) of w is arbitrary, but the eigenvalues of F are 
assumed to have negative real parts. 

(a) (50%) Show that a “separation” type principle still holds for the closed-loop eigen­
values. 

(b) (50%) Show that under the assumptions given, this new compensator still leads 
to a stable closed-loop system. 

Point of Interest Later control courses will show how to use this extra freedom 
in the compensator to achieve additional desirable properties of the closed-loop 
system. 
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5. For the following system, design a H∞ controller that minimizes the cost function 

WsS 
WuGcS ∞ 

where 
s/M + ωB

Ws(s) = 
s + ωBA 

with M = 2, ωB = 5, and A = 0.01. As discussed in class, the weight Wu should be 
adjusted so that we meet the sensitivity specification. 

You should then design a H2 optimal (LQG) controller that yields a similar settling 
time of the step response and directly compare the graphs listed below for the H2 and 
H∞ controllers. One way to do this for a SISO system is set Bu = Bw, Cz = Cy, choose 
Rww = 0.1 and Rzz = 1. Then set Ruu = Rvv = ρ and use ρ � 1 as the basic design 
parameter. You can then iterate on the choice of Rww and Rzz as needed. 

Use this procedure to design a controller (follow the code given in the notes) for the 
following system (ω1 = 1, ω2 = 5, ω3 = 10) 

1 
G1(s) = 

(−s/ω1 + 1)(s/ω2 + 1)(s/ω3 + 1) 

For each case, draw the following plots: 

•	 Sensitivity and inverse of Ws weight to show that you meet the specification. 

•	 The Nyquist/Nichols plot to show that you have the correct number of encir­
clements 

•	 A Bode graph that contains Gi(s), Gc(s), and L = GiGc(s). Clearly label each 
curve and identify the gain/phase cross-over points. 

•	 The root locus obtained by freezing the controller dynamics and then using a con­
troller αGc(s), where α ∈ {0, 2} (assuming that nominally α = 1) to investigate 
the robustness of your design to gain errors. 

•	 The step response of the closed-loop system. 

The reason for drawing these plots is to develop some insight into what a typically 
H∞ controller “looks like”. So use your results to comment on how the H∞ controller 
modifies the plant dynamics to achieve the desired performance. 
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