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1 On Linearity and Time Invariance 

Consider the systems described by the following input/output relationships: 

y(t) = u(t) + 1, (1) 

and 
y(t) = 2t3 u(t). (2) 

Are these systems linear or nonlinear? Are they time-invariant or time-varying? 

Linearity — A system is linear if any linear combination of two arbitrary inputs results in 
an output that is the linear combination of the outputs corresponding to the original inputs. 
Let us consider first system (1). We have that: 

u1(t) = 1 y1(t) = 2, and u0(t) = 0 y0(t) = 1.⇒ ⇒ 

Clearly, u0(t) = 0 u1(t), but y0(t) = 0 y1(t). This counterexample shows that the system is · � · 
not linear. 
Now consider system (2). Considering two generic inputs u1 and u2, we get 

y1(t) = 2t3 u1(t), y2(t) = 2t3 u2(t). 

Now consider the input u3(t) = αu1(t)+ βu2(t). The corresponding output can be computed 
as 

y3(t) = 2t3(αu1(t) + βu2(t)) = α 2t3 u1(t) + β 2t3 u2(t),· · 
that is, y3(t) = αy1(t) + βy2(t). Hence, the system is linear. 

Time invariance — A system is time-invariant if it commutes with a time delay, i.e., if 
the output of the system does not depend on the “origin” of the time axis. Recall that a 
time delay is a system such that its output is equal to the input, shifted in time by a certain 
delay (say T ), i.e., y(t) = u(t − T ). 
Let us check whether the systems above do in fact commute with a time delay. For system 

(1), we have: 

u(t) −→ System −→ u(t) + 1 −→ Time Delay −→ u(t − T ) + 1 

and 
u(t) −→ Time Delay −→ u(t − T ) −→ System −→ u(t − T ) + 1, 

hence the system is time-invariant. 
For system (2), we have: 

u(t) −→ System −→ 2t3 u(t) −→ Time Delay −→ 2(t − T )3 u(t − T ) 

and 
u(t) −→ Time Delay −→ u(t − T ) −→ System −→ 2t3 u(t − T ). 

Clearly, the two signals are different—the system is time-varying. 



2 Linearization 

Consider a simplified model of a car, moving on a road inclined by an angle γ with respect 
to the horizontal plane. Let v(t) be the position of the car along the road at time t. The car 
is subject to the following forces, in the direction parallel to the road: 

• Weight: −mg sin γ; 
• Aerodynamic drag: −1 ρv(t)2Scx2 
• Wheel traction: u,

so that the equation of motion of the car (i.e., F = ma) can be written as


1 1 
v̇(t) = f(v(t), u(t)) = − ρScxv(t)

2 − g sin γ + u(t). 
2m m 

(Note that we are considering γ as a fixed parameter.) This model is nonlinear. Let us 
derive a linearized model for the car’s dynamics. 
The first step is to define a reference trajectory ve (and the corresponding input ue),in 

such a way that 
v̇e(t) = f(ve(t), ue(t)). (3) 

For example, let us consider a constant-speed reference trajectory, as one could do, e.g., for 
cruise control. In other words, let us choose ve(t) = v̄ where v̄ is the reference speed, say 65 
mph. The corresponding reference input can be computed as follows: 

1 1 
v̇e(t) = − ρScxve(t)

2 − g sin γ + ue(t),
2m m 

i.e., 
1 2 1 

0 = − ρScxv̄ − g sin γ + ue(t),
2m m 

and hence ue(t) = 1
2 ρScxv̄

2 + mg sin γ. 
The second step is to rewrite the equations of motion as a Taylor series expansion about 

the reference. Formally, 

∂f ∂f 
v̇(t) = f(ve(t), ue(t)) + (ve(t), ue(t)) δv(t) + (ve(t), ue(t)) δu(t) + o((δv, δu)2),

∂v 
· 

∂u 
· 

where we defined δv(t) := v(t) − ve(t), and δu(t) := u(t) − ue(t). Assuming that δv and δu 
are “small” (in the sense that we can ignore the second-order and higher terms in the Taylor 
series), we can set 

∂f ∂f 
v̇(t) ≈ f(ve(t), ue(t)) + 

∂v 
(ve(t), ue(t)) · δv(t) + 

∂u 
(ve(t), ue(t)) · δu(t). (4) 

Subtracting (3) from (4), and replacing the “approximately equal” with an “equal” sign for 
simplicity, we get 

∂f ∂f 
δv̇(t) = (ve(t), ue(t)) δv(t) + (ve(t), ue(t)) δu(t),

∂v 
·

∂u 
·� �� � � �� � 

A B 

which is, in general, a time-varying linear system (we are tacitly assuming the output is 
equal to the state v, i.e., the output matrix C is the identity I, and D = 0). 
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Computing the partial derivatives yields:


∂f 1 
A = (ve(t), ue(t)) = − ρScx2ve(t)

∂v 2m 

∂f 1 
B = (ve(t), ue(t)) = . 

∂u m 
Notice that in general these matrices can be functions of time, even in the case in which the 

function f is not, due to the fact that the reference trajectory (and hence the linearization 
point) depends on time. 
Ultimately, we get the linearized model as 

1 1 
δv̇(t) = − ρScx ̄ δu. v δv + 

m m 
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