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16.30/31, Fall 2010 — Recitation # 1


September 14, 2010 

In this recitation we considered the following problem. Given a plant with open-loop 
transfer function 

1.1569s + 0.3435 
Gp(s) = −

s2 + 0.7410s + 0.9272
, 

design a feedback control system such that the closed-loop dominant poles have undamped 
natural frequency ωn = 3rad/s and damping ratio ζ = 0.6. (This problem was mentioned 
during lecture, see the Topic 2 notes, as a stability augmentation system for a B747.) 
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Figure 1: The standard block diagram for a unit-feedback loop. 

Since we are working with the root locus method, it is convenient to rewrite the transfer 
function in the form 

z∈Zeroes(Gp)
(s − z) s + 0.2969 

Gp(s) = Kp � 
p∈Poles(Gp)

(s − p)
= −1.1569 · 

s2 + 0.7410s + 0.9272 
. 

Note that the “root-locus gain” of the plant’s transfer function Kp = −1.1569 is negative. 
This is a fact that is easy to overlook, and may generate confusion if not recognized and 
handled properly. More on this later. 
The pole-zero map for the system is shown in Figure 2, where: 

•	 z1 = −0.2969 is the zero (root of the numerator) of Gp. 
•	 p1,2 = −0.3705 ± 0.8888 are the poles (roots of the denominator) of Gp. 
pd = −1.8 ± 2.4j are the desired closed-loop poles. (We know that the magnitude of the •	 1,2 

desired poles is equal to ωn = 3, and the real part is −ζωn = −1.8.) 

Q1. Can we achieve the control objective using proportional feedback? 

A first question one may want to answer is whether a simple proportional feedback (i.e., 
Gc(s) = K, for some K) would do the trick. 
You may convince yourself that this is not likely to be the case, e.g., by sketching the root 

locus. However, it is possible to check rigorously whether a point is on the root locus (i.e., 
whether the root locus goes through a given point), using the angle condition: 

∠(s − z) − ∠(s − p) = l180◦, l = 0, ±1, ±2, . . . . 
z∈Zeroes(G)	 p∈Poles(G) 

(In particular, the point will be on the positive-gain root locus for l odd, and on the negative-
gain root locus for l even.) 
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Figure 2: The open loop poles (blue crosses) are in an undesirable locations: the response 
is too slow (ωn ≈ 1rad/s) and too lightly damped (ζ ≈ 0.4). The objective is to design 
a control system such that the closed loop system has its dominant poles in the location 
marked with red squares. 

Recall that, e.g., (s−z) can be thought of as a vector going from z to s. The angle ∠(s−z) 
can be computed as, the arctangent of Im(s−z)/Re(s−z). (You may want to use the atan2 
function on your calculator or in Matlab to make sure you get the quadrant right.) 
In our case, let us check where the desired poles are on the root locus. Due to symmetry, 

it is sufficient to check for one of them, i.e., for pd = −1.8 + 2.4j. We get 1 

•	 p
d
1
d − z1 = −1.5031 + 2.4j, hence ∠(p1

d −
d 
z1) = atan2(2.4, −1.5031) = 122.06◦. 

p1 − p1 = −1.4295 + 1.5112j, hence ∠(p1 − p1) = atan2(1.5112, −1.4295) = 133.41◦.•	
pd = −1.4295 + 3.2888j, hence ∠(pd1 − p2) = atan2(3.2888, −1.4295) = 113.50◦.• 1 − p2 

Hence, 

∠(p1
d − z1) − ∠(p1

d − p1) − ∠(p1
d − p2) = −124.84◦ =� l180◦, l = 0, ±1, ±2, . . . 

and the point pd1 is not on the root locus (for proportional feedback). 

Q2. Can we achieve the control objective using a dynamic compensator? 

To make a long story short: yes. There are many ways one can achieve the objective. Let 
us consider one, we will discuss others shortly. 
Let us use a dynamic compensator of the form 

Gc(s) = Kp 
s − zc 

. 
s − pc 

Let us choose pc = z1, i.e., let us cancel the open-loop zero with a compensator pole. We 
still have two degrees of freedom remaining: the location of the zero zc and the gain Kc. 
The angle condition in this case would be (recall that the open-loop zero is canceled with 

the compensator pole): 

∠(p d 
1 − zc) − ∠(p d 

1 − p1) − ∠(p1 
d − p2) = l180◦, l = 0, ±1, ±2, . . . , 
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Figure 3: Root locus and closed-loop step response using the lag compensator proposed in 
the text. 

that is (recall that we have already computed the angles of p1 
d − p1,2), 

∠(p d 
1 − zc) = 246.9◦ + l180◦, l = 0, ±1, ±2, . . . 

In other words, if we choose zc in such a way that ∠(pd 
1 − zc) = 66.9◦, we satisfy the angle 

condition, with l = −1. Since l is odd, the desired poles will be on the positive-gain root 
locus for the proposed feedback system. 
In order to find zc, just set 

∠(p1 
d − zc) = atan2(2.4, −1.8 − zc) = 66.9◦, 

i.e., 
2.4 

zc = −1.8 − = −2.82. 
tan 66.9◦ 

Notice that given the location of the compensator pole and zero, this is a lag compensator 
(the pole is closer to the origin). The magnitude ratio between the pole and the zero is 
within the standard guidelines of a factor between 5 and 10. 
The last step in the design of the compensator is the choice of the gain. The magnitude 

condition can be written as: 

�z∈Zeroes(G) |s − z| 
=

1 
, 

z∈Poles(G) |s − p| |K| 

where G = GcGp and K = KcKp. Doing the calculations (remember we can ignore the 
canceled pole/zero), we get: |K| = 2.859, and ultimately |Kc| = |K|/|Kp| = 2.471. Since 
Kp < 0 as already mentioned, we can conclude Kc = −2.471, and 

s + 2.82 
Gc = −2.471 . 

s + 0.2969 
For verification purposes, we can compute the characteristic equation of the closed-loop 

system: 

s2 + 0.7410s + 0.9272 + 2.859(s + 2.82) s2 + 3.6s + 9 
1 + GcGp = = , 

. . . . . . 
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Figure 4: Root locus and closed-loop step response using the simple compensator with one 
pole discussed during the recitation. 

which shows that the closed-loop poleas are indeed at the desired locations. 
A similar lag-compensation approach would have worked, without the need for pole-zero 

cancellation, but the algebra would have been a bit more complicated. 
The root locus and the (closed-loop) step response using the proposed compensator are 

shown in Figure 3. 

Other approaches 

Simple lag One approach proposed in class was consider a dynamic compensator with 
only one pole pc. The angle condition can be written as 

∠(p1
d−z1)−∠(p1

d−p1)−∠(p1
d−p2)−∠(p1

d−pc) = −124.84◦−∠(p1
d−pc) = l180◦, l = 0, ±1, ±2, . . . , 

i.e., we can choose 
∠(p d1 − pc) = 55.16◦, 

satisfying the angle condition with l = −1. Since l is odd, the desired closed loop poles will 
be on the positive-gain root locus. 
Proceeding as in the previous case, we can compute pc = −1.8 − 2.4/ tan 55.16◦ = −3.47. 

The magnitude condition would yield Kc = −6.658. 
Indeed, two of the closed-loop poles will be at the desired location. However, a new pole 

has been introduced in the system, and will actually play a dominant role in the response, 
which is not desirable—see Figure 4. Also note that the steady-state error is quite large. 
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