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An overview of nonlinear control design methods 

Extend applicability of linear design methods: 
Gain scheduling

Integrator anti-windup schemes


Geometric control 
Feedback linearization

Dynamics inversion

Differential flatness


Adaptive control 
Neural network augmentation 

Lyapunov-based methods/Contraction theory 
Control Lyapunov Functions

Sliding mode control

Backstepping


Computational/logic approaches 
Hybrid systems

Model Predictive Control
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Gain scheduling


Nonlinear system: ẋ = f (x , u). 

Choose n equilibrium points, i.e., (xi 
∗, ui 

∗), such that f (xi 
∗, ui 

∗) = 0,

i = 1, . . . n.


For each of these equilibria, linearize the system and design a “local” control 
law ui (x) = ui 

∗ − K (x − xi 
∗) for the linearization. 

A global control law consists of: 

Choose the right control law, as a function of the state: i = σ(x) 

Use that control law: u(x) = uσ(x)(x) 
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Control Lyapunov functions


Nonlinear system: ẋ = f (x) + g(x)u, with equilibrium at x = 0 

A function V : x �→ V (x) is a Control Lyapunov Function if 

It is positive definite 

V (0) = 0. 

It is always possible to find u such that 

V̇ = 
∂V

f (x) + 
∂V

g(x)u ≤ 0. 
∂x ∂x 

If V is a CLF, it is always possible to design a control law ensuring V̇ ≤ 0! 
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Differential Flatness


A dynamical system 

d x 
dt 

= f (x , u), 

z = h(x , u). 

is said to be differentially flat, with flat output z , if one can compute the 
state and input trajectories as a function of the flat outputs and a finite 
number of its derivatives, i.e., if one can find a map Ξ such that 

(x , u) = Ξ(z , ż , . . . , z (l)). 

Differential flatness can be shown to be equivalent to (dynamic) feedback 
linearizability. (But more intuitive.) 
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A differentially-flat model of aircraft dynamics 1/4


Given a reference trajectory, pd , we can compute the reference velocity ṗd , 
and the reference acceleration p̈d . 

Based on these, and assuming coordinated flight (and hence ṗd = 0) we can 
get a set of reference wind axes: 

The xw axis is aligned with the velocity vector pd , i.e., xw := ṗd /�ṗd �. 

The acceleration can be written as 

p̈d = g + fI /m, 

where fI is the aerodynamic/propulsive force in inertial frame, and g is the 
gravity vector. 

The main sources of forces for an airplane are the engine thrust and lift. Both 
are approximately contained within the symmetry plane of the aircraft. Hence, 
the zw axis is chosen such that the (xw , zw ) plane contains fI . 

The yw axis is chosen to complete a right-handed orthonormal triad. 

E. Frazzoli (MIT) Nonlinear Control December 3, 2010 6 / 14 



A differentially-flat model of aircraft dynamics 2/4 

Assume that we can control independently: 

The tangential acceleration1 at along the wind velocity vector (xw axis). 
The normal acceleration an (along the zw axis). 
The roll rate ω1 around the wind velocity vector (xw axis). 

Recall p̈d = g + aI = g + Raw , where aI is the acceleration in the inertial 
frame, aw is the acceleration in the wind frame defined in the previous slide, 
and R is a rotation matrix, computed as a function of ṗd , p̈d . 

Differentiating, 

(3) ˙p = Raw + Rȧw = R(ω × aw ) + Rȧw .d 

In addition, since ṗd = VRe1 (coordinated flight), we also have 

˙p̈d = g + Raw = V Re1 + VR(ω × e1) 

1Here and below acceleration is understood as “acceleration due to aerodynamic/propulsive 
forces.” 

E. Frazzoli (MIT) Nonlinear Control December 3, 2010 7 / 14 



A differentially-flat model of aircraft dynamics 3/4


In coordinates, the second equation reads: ⎡ ⎤ 
V̇

p̈d = R ⎣ V ω3 
⎦ , 

−V ω2 

i.e., ω2 and ω3 can be computed from ṗ and p̈. 

dt3 
ω3at − ω1an 

Also, ⎡ ⎤ ⎡ ⎤ 
d ⎣pd,2⎦ = R 

pd,1 ⎣ 
ω2an + ȧt ⎦ 

pd,3 −ω2at + ȧn 
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A differentially-flat model of aircraft dynamics 4/4


Finally, we have ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎣ 
ȧt 
ω1 

ȧn 

⎦ = ⎣ 
−ω2an 

ω3at /an 

ω2at 

⎦ + ⎣ 
1 
0 
0 

0 
−1/an 

0 

0 
0 
1 

⎦ RT d
3 

dt3 
⎣ 
pd,1 

pd,2 

pd,3 

⎦ 

I.e., the system is differentially flat, with flat output pd , as long as 

V = �ṗd � = 0: if the velocity is zero, then coordinated flight is not well �
defined. 

an = I − 
V 
1
2 ṗd ṗd

T (p̈d − g) = 0: if the normal acceleration is zero, the roll �
attitude is not well defined. 
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Incorporating aerodynamics and propulsive models


We have derived a differentially flat system for aircraft dynamics, with flat 
output pd (position trajectory) and inputs: (ȧt , ω1, ȧn). 

How can we control at , an (or their derivatives)? 

The wing lift is


L =
1 

ρV 2SCLα α + aL0 ,
2m 
the drag is similarly computed. 

The engine thrust T is a function of the throttle setting δT and other variables. 

The acceleration components in wind axes are given by 

at = T (δT ) cos α − D(α), 

an = −T (δT ) sin α − L(α). 

Compute, e.g., α and δT , from the desired at , an.


Rely on a CAS that tracks the commanded α, δT , and ω1.
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Adding feedback


So far, we have shown that, given a reference trajectory, we can compute 
uniquely (modulo a 180◦ roll rotation) the corresponding state and control 
input trajectories. 

What if the initial condition is not on the reference trajectory? What if there 
are disturbances that make the aircraft deviate from the trajectory? We need 
feedback. 

Let p : t �→ p(t) be the actual position of the vehicle, and consider a system 
in which p(3) = u, e.g., ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ 

p 0 I 0 p 0
d ⎣ṗ⎦ = ⎣0 0 I ⎦⎣ṗ⎦ + ⎣0⎦ u 
dt p̈ 0 0 0 p̈ I 
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Tracking control law 

Define the error e = p − pd . The error dynamics are given by ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ 
e 0 I 0 e 0 � �d ⎣ė⎦ = ⎣0 0 I ⎦⎣ė⎦ + ⎣0⎦ u − p(3) . 

dt d 
ë 0 0 0 ë I 

If we 

set 
u = p(3) − K [e, ė, ë]T ,d 

where k is a stabilizing control gain for the error dynamics, and 

compute at , an, ω1 from (p, ṗ, p̈, u) (vs. pd and its derivatives) 

then, 
lim e(t) = lim (p(t) − pd (t)) = 0, 

t t→+∞ →+∞ 

as desired. 
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Some remarks


Convergence assured “almost” globally, the control law breaks down if at any 
point ẋ = 0, or an = 0. 

A modification of this control law can ensure path tracking (vs. trajectory 
tracking), requiring less thrust control effort. See Hauser & Hindman 

 

Some limitations: 

Simplified aerodynamic/propulsive models. 

Saturations are not taken into account (unbounded an, at , ω1). 

Coordinated flight is an additional constraints, no control over roll: this model 
cannot account for, e.g., a split-S maneuver. 
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