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Analysis of Nonlinear Systems

e Lyapunov Stability Analysis
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Lyapunov Stability Analysis

e \Very general method to prove (or disprove) stability of nonlinear sys-
tems.

e Formalizes idea that all systems will tend to a “minimum-energy”
state.

e Lyapunov's stability theory is the single most powerful method
in stability analysis of nonlinear systems.

e Consider a nonlinear system x = f(x)
e A point xq is an equilibrium point if f(xq) =0

e Can always assume x5 = 0

e In general, an equilibrium point is said to be

e Stable in the sense of Lyapunov if (arbitrarily) small devia-
tions from the equilibrium result in trajectories that stay (arbitrar-
ily) close to the equilibrium for all time.

e Asymptotically stable if small deviations from the equilibrium
are eventually “forgotten,” and the system returns asymptotically
to the equilibrium point.

e Exponentially stable if it is asymptotically stable, and the con-
vergence to the equilibrium point is “fast.”
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Stability

e Let x =0 ¢& D be an equilibrium point of the system
x = f(x),
where f : D — R" is locally Lipschitz in D C R

e f(x) is locally Lipschitz in D if Vx € D 31(x) such that |f(y) —
f(z)] < Lly —z| for all y, z € I(x).

e Smoothness condition for functions which is stronger than regular
continuity — intuitively, a Lipschitz continuous function is limited
in how fast it can change. (see here)

e A sufficient condition for a function to be Lipschitz is that the
Jacobian Jf /0x is uniformly bounded for all x.

e The equilibrium point is

e Stable in the sense of Lyapunov (ISL) if, for each ¢ > 0,
there is 6 = d(¢) > 0 such that

IxO)] <o = |x(®) <&, VL=0;
e Asymptotically stable if stable, and there exists § > 0 s.t.
Ix(0)] < 5= lim x(t)=0
e Exponentially stable if there exist 9, a, 8 > 0 s.t.
Ix(0)]| < & = [Ix(@)]| < Be™™, ¥t > 0;

e Unstable if not stable.

—‘\IS\L‘er Marginally Stable
~ \\\ y

*< / Unstab
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e How do we analyze the stability of an equilibrium point?

e Already talked about how to linearize the dynamics about the equilib-
rium point and use the conclusion from the linear analysis to develop
a local conclusion

e Often called Lyapunov’s first method

e How about a more global conclusion?

e Powerful method based on concept of Lyapunov function

¢ Lyapunov’s second method

e LF is a scalar function of the state that is always non-negative,
is zero only at the equilibrium point, and is such that its value is
non-increasing along system'’s trajectories.

e Generalization of result from classical mechanics, which is that a vi-
bratory system is stable if the total energy is continually decreasing.
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Lyapunov Stability Theorem

o Let D be a compact subset! of the state space, containing the equi-
librium point (i.e., {xq} € D C R"), and a let there be a function
V.:D—R.

e Theorem: The equilibrium point x; is stable (in the sense of Lya-
punov) if the V satisfies the following conditions (and if it does, it is
called a Lyapunov function):

1. V(x) >0, for all x € D.
2. V(x) =0 if and only if x = x.

3. For all x(t) € D,

Vi) = Vet = oo B
= Y g <

e Furthermore,

1. If V(x(t)) = 0 only when x(t) = xq, then the equilibrium is
asymptotically stable.

2. 1f V(x(t)) < —aV(x(t)), for some a > 0, then the equilibrium
is exponentially stable.

e Finally, to ensure , need to impose extra condition
that as ||x|| = +o0, then V(x) — 4o0.

e Such a function V is said radially unbounded

LA compact set is a set that is closed and bounded, e.g., the set {(z,y): 0 <z < 1,—22 <y < z2.
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e Note that condition (1) in the Theorem corresponds to V' (x) being

positive definite (V' (x) > 0 for all x £ 0 and V(0)

~0)

V(x) being positive semi-definite means V(x) > 0 for all x, but

V(x) can be zero at points other than x = (.)

) V(x) = 22 + a2 PD, PSD,
ia) V(x) =27 PD, PSD,
i) V(x) = (z1 + 22)* PD, PSD,
i) V(x) = —2%7 — (321 + 219)? PD, PSD,
iv) V(x) = z129 + 73 PD, PSD,
v) V(x) =22+ 29“2 PD, PSD,

2

ND,
ND,
ND,
ND,

ND,

ND,

NSD, ID
NSD, ID
NSD, ID
NSD, ID

NSD, 1D

NSD, 1D
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Example 1: Pendulum

e Typical method for finding candidate Lyapunov functions is based on
the mechanical energy in the system

e Consider a pendulum:

0 = —%sin(@) — b,

e Setting ©1 =0, x9 = 0:
jﬁl = T9

:1':2 = —gSiH(le) — CI9

[

e (Can use the mechanical energy as a Lyapunov function candidate:

1
V = oml’a; + mgl(l = cos(a))

e Analysis:
V(0) =
V(Sﬁl,xg) Z 0
V(wy,xs) = (mlPzy)iy + mglsin(z )i
= —ceml*r; <0
e Thus the equilibrium point (z1,22) = 0 is stable in the sense of
Lyapunov.

e But note that 1 is only NSD
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Example 2: Linear System

e Consider a system x = Ax.

e Another common choice: quadratic Lyapunov functions,
V(x) = |[[Mx|*=x"M"Mx =x"Px
with P = M* M, a symmetric and positive definite matrix.

e Easy to check that V(0) =0, and V(x) > 0

e To find the derivative along trajectories, note that

V(x) = x! Px+x'Px
= x' A" Px + x' PAx
= x' (AP + PA)x

e Next step: make this derivative equal to a given negative-definite
function

V(ix)=x'(ATP+ PA)x = —x'Qx, (Q >0)

e Then appropriate matrix P can be found by solving:
AP+ PA=—Q
e Not surprisingly, this is called a Lyapunov equation
e Note that it happens to be the linear part of a Riccati equation

e |t always has a solution if all the eigenvalues of A are in the left
half plane (i.e., A is Hurwitz, and defines a stable linear system)

November 27, 2010
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Example 3: Controlled Linear System

e Consider a possibly unstable, but controllable linear system

X = Ax + Bu

e We know that if we solve the Riccati equation
A'P+ PA—PBR'B'P+Q =0

and set u = Kx with K = —R'BTP, the closed-loop system is
stable.
x =(A+ BK)x

e Can confirm this fact using the Lyapunov Thm.

e In particular, note that the solution P of the Riccati equation has the
interpretation of a Lyapunov function, i.e., for this closed-loop system
we can use

V(x)=x'Px
e Check:
V(x) = x!Px+ %' Px
= x' P(A+ BK)x +x'(A+ BK)' Px
= x'(PA+ PBK + A'P+ K'B'P)x
— x'(A"P+ PA—- PBR'B"P - PBR'B'P)x
= —x'(Q+PBR 'B"P)x <0

November 27, 2010
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Example 4: Local Region

e Consider the system

der 2
dt 1+z
which has equilibrium points at z =1 and z = —2.

e Around the eq point x =1, let z = x — 1, then
dz 2
dt -~ 2 + 2
which has an eq point at z = 0.

e Consider LF V' = %ZQ which is global PD

—z—1

e Then can show

e Now restrict attention to an interval B,, where r < 2 and thus z < 2
and —2 < z, which can be rewritten as 2 + 2z > 0, then have

V(2+2) = 22— (224 2)(2+ 2)
= —23 — 377

= —2(2+3)<0Vz e B,(r<?2)

e Thus it follows that V < 0 for all z € B,, z # 0 and hence the eq
point x, = 1 is locally asymptotically stable.

November 27, 2010
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Example 5: Saturation

R me am o

e System dynamics are

é = —X9
| 1 fle)
fe = Tt

where it is known that:

e u= f(e) and f(-) lies in the first and third quadrants
o f(e) =0 means e =0, and [; f(e)de > 0

e Assume that 7' > 0 so open loop stable

e Candidate Lyapunov function

T

V= 5%% +/0 flo)do

o Clearly:
eV =0ife=29=0and V >0 forz3+e>#0
e What about the derivative?

V = Taxoiy+ f(e)é

= Ty [—%ZUQ + @] + f(e) [—x9]

_ 2
= —I

e Since V PD and V NSD, the origin is stable ISL.

November 27, 2010
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Invariance Principle

e Lyapunov's theorem ensures asymptotic stability if we can find a Lya-
punov function that is strictly decreasing away from the equilibrium.

e Unfortunately, in many cases (e.g., in aerospace, robotics, etc.),
there may be situations in which V' = 0 for states other than at

the equilibrium. (i.e. V is NSD not ND)

e Need further analysis tool for these types of systems, since stable
ISL is typically insufficient

e LaSalle’s invariance principle Consider a system

%= f(x)

o Let Q) € D be a (compact) positively invariant set, i.e., a set such
that if x(tg) € €, then x(t) € Q) for all t > t,.

o Let V: D — R, such that V(x) <0 for all x € Q.

Then, x(t) will eventually approach the largest positively invariant set
in which V' = 0.

e Note that positively invariant sets include equilibrium points and limit
cycles.

November 27, 2010
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Invariance Example 1

e Pendulum Revisited — consider again the mechanical energy as the
Lyapunov function

e Showed that V(x) = —cmi?z3 ~ 6?

e Thus previously could only show that V(x) < 0, and the system
is stable ISL

e But we know_that V(X) — 0 whenever § = 0. i.e., the system is
on the o = 0 = 0 axis

e However, the only part of the x5 = 0 axis that is invariant is the
origin!

e LaSalle's invariance principle allows us to conclude that the pen-
dulum system response must tend to this invariant set

e Hence the system is in fact asymptotically stable.

e Revisit Example 5:

o V decreasing if 5 = 0, and the only invariant point is 9 = e = 0,
so the origin is asymptotically stable
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Invariance Example 2

e Limit cycle:

i1 = x9 — x[2] + 225 — 10]
Ty = —a° — 3ahla] + 225 — 10]

e Note that z{ + 2235 — 10 is invariant since

d
%[x‘f + 225 — 10] = —(4a7° + 1225) (2] + 225 — 10)

which is zero if 2} + 223 = 10.

e Dynamics on this set governed by 1 = x5 and 5 = —x7, which
corresponds to a limit cycle with clockwise state motion in the
phase plane

e Is the limit cycle attractive? To determine, pick
V = (2] + 223 — 10)?
which is a measure of the distance to the LC.
e In a region about the LC, can show that
V = —8(z1% + 325) (2] + 222 — 10)?

so V < 0 except if 1 4 223 = 10 (the LC) or 21" + 328 = 0 (at
origin).

e Conclusion: since the origin and LC are the invariant set for this
system - thus all trajectories starting in a neighborhood of the LC
converge to this invariant set

e Actually turns out the origin in unstable.
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Summary

e Lyapunov functions are a very powerful tool to study stability of a
system.

e Lyapunov’s theorem only gives us a sufficient condition for stability
e If we can find a Lyapunov function, then we know the equilibrium
is stable.

e However, if a candidate Lyapunov function does not satisfy the
conditions in the theorem, this does not prove that the equi-
librium is unstable.

e Unfortunately, there is no general way for constructing Lyapunov func-
tions: however,
e Often energy can be used as a Lyapunov function.

e Quadratic Lyapunov functions are commonly used; these can be
derived from linearization of the system near equilibrium points.

e A very recent development: “Sum-of-squares’ methods can be
used to construct polynomial Lyapunov functions.

e LaSalle’s invariance principle very useful in resolving cases when V' is
negative semi-definite.
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