Topic #21

16.30/31 Feedback Control Systems

Systems with Nonlinear Functions

e Describing Function Analysis
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NL Example

e Another classic example — Van Der Pol equation':
i+az*—Di+x=0
which can be written as linear system

G(s) = —2

s2 —as+1

in negative feedback with a nonlinear function f(x,) = 2%%

0 O @ (e T
] fwd) | Gl

e Would expect to see different behaviors from the system depending
on the value of «

-3 -2 1 0 1 2 3 4

e Of particular concern is the existence of a limit cycle response

e Sustained oscillation for a nonlinear system, of the type above

ISlotine and Li, page 158
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e In this case the signal z(¢) would be of the form of an oscillation
x(t) = Asin(wt) so that (t) = Aw cos(wt)

e Note that A and w are not known, and may not actually exist.

e Given the form of x(¢), we have that

q(t) = =2t = —A*sin®(wt)Aw cos(wt)

— —%(cos(wt) — cos(3wt))

e Thus the output of the nonlinearity (input of the linear part) contains
the third harmonic of the input

e Key point: since the system G(s) is low pass, expect that this
third harmonic will be “sufficiently attenuated” by the linear sys-
tem that we can approximate

A3
q(t) = =2’ ~ —Tw cos(wt)
A% d ,
= Z@[—A Slﬂ(édt)]

e Note that we can now create an effective “transfer function” of
this nonlinearity by defining that:

A?jw
4

which approximates the effect of the nonlinearity as a frequency re-

q=NAw)(—z) = NAwW)=

sponse function.
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e What are the implications of adding this nonlinearity into the feedback
loop?

e Can approximately answer that question by looking at the stability

of G(s) in feedback with N.
z = Asin(wt) = G(jw)q = Gjw)N (A, w)(—z)
which is equivalent to:
(1+ GUw)N(A ) = 0

that we can rewrite as:
A%(jw) «

4 (jw)P—aljw)+1
which is only true if A =2 and w =1

1+ )

e These results suggest that we could get sustained oscillations in this
case (i.e. a limit cycle) of amplitude 2 and frequency 1.

e This is consistent with the response seen in the plots - independent
of o we get sustained oscillations in which the x(t) value settles
down to an amplitude of 2.

e Note that o does impact the response and changes the shape/fea-
tures in the response.

e Approach (called Describing Functions) is generalizable....
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Fall 2010 16.30/31 21-5

Describing Function Analysis

e Now consider a more general analysis of the describing function ap-
proach.

e In this case consider the input to the nonlinearity to be z(t) =
Asin wt.

e Would expect that the output y = f(x) is a complex waveform,
which we represent using a Fourier series of the form:

o0
y(t) = by + Z(an sin nwt + by, cos nwt)

n=1

e So it is explicit that the output of the nonlinearity contains multiple
harmonics of the ingoing signal.

e In general we would expect these harmonics to pass through the
system (G(s) and show up in the input to the nonlinearity

e Would then have a much more complicated input for z(t), leading
to a more complex output y(f) = non-feasible analysis path

e Need approximate approach, so assume

e The fundamental y; = a; sinwt+ by coswt is significantly larger
in amplitude than the harmonics

e The linear system ((s) acts as a low-pass that attenuates the
harmonics more strongly than the fundamental.
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e As a result, can approximate y(t) as y, and then the describing
function of the nonlinearity becomes

yr

x

N —

e Using Fourier analysis, can show that

w W

27 Jw 27 Jw
a; = —/ y(t)sinwt dt by = —/ y(t) coswt dt
0 0

v v

e Note that will often find that IV is a function of the amplitude A
and the frequency w.

e Simple example: ideal relay y = T if z > 0, otherwise y = —T'.
Then (setting w = 1 for simplicity, since the solution isn't a function

of w)
1 2 2 T 4T
CL1:—/ y(t)sintdt:—/ Tsint dt = —
0 0

v v v

e Nonlinearity is odd (i.e., y(—t) = —y(t)), so b; =0 V i

e So we have T
N = —
TA

so the equivalent gain decreases as the input amplitude goes up.

e Makes sense since the output is limited, so effective gain of the
nonlinearity must decrease as the amplitude of the input goes up
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Saturation Nonlinearity

e Classic nonlinearity is the saturation function

T ife>T
u= f(e) = e if —T<e<T
=T ife< =T

e Outputs the signal, but only up to some limited magnitude, then
caps the output to a value T.

e Saturation is an odd function

e Describing function calculation is (as before b; = 0):

e Assume e(t) = Asinwt and A > T, and find ¥7 so that

e(tr) = Asinyp =T = p = arcsin (%)

e Set 1) = wt, so that dy) = wdt

4 /2
ay = ~ y(t)sine v

™ Jo W
A U 4 /2

— —/ Asin ) sin d¢+—/ T'siny dyp
™ Jo T vr
1A [Ur aT [

= = Asin® 1 d¢+—/ sin ) diyp
T Jo ™ Jyr

_% ] Z_|_£ 1_ Z2
= 7TaI’CSHl A - A

e Soif A>T the DF is given by

o () (-

and if A < T, then N(A) = 1.
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Odd Nonlinearities with Memory

e Many of the DF are real, but for NL with delay, hysteresis, can get
very complex forms for /N that involve phase lags.

e NN has both real and imaginary parts

e Example: relay with hysteresis (also known as a Schmitt trigger)

fle)y

e Converts input sine wave to square wave, and also introduces phase
shift, as change from —1 to +1 occurs A after input signal has
changed sign.

o If 1hp = arcsin(%), then

(N ™
by = E(/ — CoS Y dw—l—/ cos 1 d@b) :—gé
™ \Jo " T A

A

(N ™ 2
o= L[ [Cnw i) =T (3)

e [hus we have
AT A2 A
M= 4 \/“(z) A

e Where the complex term arises from the phase shift from a sin

input to a cos output.
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Limit Cycle Analysis

e Since N is an equivalent linear gain, the stability of the loop involving
both N and G is given by the condition that there be a nonzero
solution to the equation

—1
GN+1=0 = G=—
i N

e Graphically what this will look like is an intersection between the
Nyquist plot of G(s) and the DF (—1/N)

o If N is real, then —1/N is along the negative real line

e The intersection point gives two values:

e w from G(jw) at the intersection point gives the frequency of the
oscillation

e A from the expression for N for the particular value associated
with the intersection point.
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DF Analysis Example

e Plant: G(s) = s(T15+1])((T23+1) with relay nonlinearity:

T ife>0
f<e)_{—T ife <0

e Describing function for f given by N = 4T /(w A), and thus
1 TA

N 4T
which is on negative real line moving to left as A increases.

e Nyquist plot of G(s) will cross the real line at
KT
(Tl + T2>

with corresponding w = 1/y/T1T5

e Graphical test:

With a Relay, K=1.5, A=2.2918

Imag
o

Fig. 1: DF graphical test — note that the DF is on the negative real line, parameterized
by A, whereas the transfer function of G is parameterized by w
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XY Graph 1

Fig. 2: Typical simulation setup

T1=3, T2=2, K=2, T=1, A=3.05, ©®=0.4
1.5 T ) . .

Fig. 3: System initially forced a little (green) and a lot (blue), and then both re-
sponses converge to the same limit cycle

e (Can show that the expected amplitude of the limit cycle is:
_ ATKTVT
B 7T<T1 + TQ)

e Compare with nonlinear simulation result:

e Can we prove that this limit cycle is stable or unstable?
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e Now consider the same system, but a saturation nonlinearity instead.

e For the graphical test, note that —1/N s real, and very similar to
the result for a relay

Relay

10" | : - ‘ — Saturation | |

107"

0 : 2 3 4 5
A
Fig. 4: Comparison of N for relay and saturation

e The slight difference being in resulting amplitude of limit cycle

With a Saturation , K=1.5 A=2.2111

Imag
o
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e Now consider the system with a relay hysteresis with A =T'/3

e First note that if N(A) = FF — jH, = _Wl — LU and in this

F2+H?
case
2 2 ’ 2 2 2
AT A AT A AT
F2+H? = [ — J R — — ] =(—
ar= () (- () ) () ) - ()
so we have

F )G

e So now use this to find when I(G(jw.)) = —I2, and then use

AT "
R(G(jw,.)) to find A.

With a Relay with Hysteresis, K=1.5 A=2.921

—G

1 (]
N

Imag
o

_1 Il Il Il Il Il
-5 -4 -3 -2 —1 0
Real

Fig. 5: Test for limit cycle for a relay with hysteresis, K = 1.5, A =1T/3
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Sim response with different NLs, K=1.5
15 T T T T

Relay
— — Saturation

—
T

]

]

]

]

]

]
|

0.5

15 ' ' , .
Z4 ) 0 2 4 6

Fig. 6: Simulation comparison of all 3 types of nonlinearities with K = 1.5. Simu-
lation results agree well with the predictions.
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e Repeat the analysis with K’ = 1 to get the following plots

e Note greater separation in the amplitudes

With a Relay, K=1, A=1.5279 With a Saturation , K=1 A=1.3812
4 T T T T 4 T T T T T
— 0 —G
__1 !
3 N [ 3 N [
2 4 2 i
1 5 1 .
2 g
g0 g 0
1+ -1
2} -2
3} -3r
_4 i i i i i i i i _4 i I i
-8 -7 -6 -5 -4 -3 -2 -1 0 -8 -7 -6 -5
Real
With a Relay with Hysteresis, K=1 A=2.0808 Sim response with different NLs, K=1
1 T T T T T 1 T T T T
08 —G 1 Relay
. — % e S S s Saturation |1
0.6 1 0.6F
0.4F b 0.4}
0.2 0.2r
g
£ 0 =) 0t
-0.2 -0.2
-04 -0.4
-0.6 -0.6
-0.8 -0.8
—1 L L . : - 1 i i i i
_5 4 -3 -2 -1 0 __4 _2 0 2 4 6
Real T

Fig. 7: Repeat all simulations with K =1
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e Repeat the analysis with ' = (.7 to get the following plots

e Now note that the saturation nonlinearity does not lead to a limit
cycle
With a Relay, K=0.7, A=1.0695 With a Saturation , K=0.7 A=Inf
4 T T T T T 4 T T T \ T
—G —aG
1 1
3t — N 3 — %N
2t . 2t .
1F . 1F 3
& g
g0 1 EP ]
-1t . -1t .
2t 1 ot J
3 1 3t J
-4 i i i i i i i i -4 i i i i i i i
8 7 6 5 -4 -3 2 0 8 7 6 -5 -4 -3 2 - 0
Real Real
With a Relay with Hysteresis, K=0.7 A=1.6013 Sim response with different NLs, K=0.7
1 T T T T T 0.8 . .
—G Relay
08 — Saturation
i 06t ! . o aturation | |
0.6r 1 = X
0.4
0.4r
0.2t 02f
2 ;
g 0 5 Of
02 "
-0.2
-0.4
-0.4
-0.6 0
-0.8 -0.6
e o e T e
- - - - - -2 -1 0 1 2 3 4 5
Real ;

Fig. 8: Repeat all simulations with K’ = 0.7 '
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Limit Cycle Stability

e Stability analysis is similar to that used for linear systems, where the
concern is about encirclements of critical point s = —1.

e Difference here: use the —1/N(A) point as “critical point”.

e Need to consider what the impact might be of a perturbation to
amplitude A if a limit cycle is initiated.

e In cases considered, an increase in A would correspond to a shift to
the left of the —1/N(A) point in the s-plane

e With that change, G(s) would not encircle the critical pt, the
response would be stable and the amplitude of the signal (A)
would to decrease

e Since the perturbation increase A, and response decreases it, the
limit cycle is stable.

e Similarly, if a decrease in A corresponds to a shift to the right of the
—1/N(A) point in the s-plane

e (G(s) would now encircle the critical point, the response would be
unstable and the signal amplitude (A) would increase

e Since perturbation decreases A, and response increases it, limit
cycle is stable.

e So limit cycle stability hinges on —1/N(A) intersecting Nyquist plot
with “increasing A pointing to the left of G(s)”

November 23, 2010
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-xample

,----A§\
I Im -

[ Unstable L.C. \

E. Frazzoli (MIT) Lecture 23: Describing Functions April 14, 2008 10 / 11
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Code: Describing Function Analysis

Examples of describing ftns
Jonathan How
Oct 2009

o° o° o oe

set (0, 'DefaultLinelLineWidth',1.5)

set (0, 'DefaultAxesFontName', 'arial');set (0, 'DefaultTextFontName', 'arial')

set (0, 'DefaultlineMarkerSize',8);set (0, 'DefaultlineMarkerFace','r")

set (0, 'DefaultAxesFontSize', 12);set (0, 'DefaultTextFontSize', 12);

set (0, 'DefaultFigureColor', 'w', 'DefaultAxesColor', 'w',...
'DefaultAxesXColor', 'k', 'DefaultAxesYColor','k',...

'DefaultAxesZColor', 'k', 'DefaultTextColor', 'k")

© 0 N e U os W N

= e
v o= O
o\°

©

%clear all
global T GG2 GG3 Delta

=R e
oo w

if 0

==
N o

T.1=3;T.2=2;K=1.5;T=1;
elseif 0
T_1=3;T.2=2;K=1;T=1;

=
© ®

else

[CEN)
= o

T_.1=3;T.2=2;K=0.7;T=1;
end

[CEN]
w N

SS=— (K*T_1+T_2)/(T_1+T_2);

G=tf(K,conv([T-1 1 01,[T-2 1]));

omega=logspace (—3,3,400) ; GG=freqgresp (G, omega) ; GG=squeeze (GG) ;
omegal2=1/sqrt (T_-1xT_2) ; GG2=freqresp (G, omega?2) ; GG2=squeeze (GG2) ;

NONONN NN
© 0 N O U

Al=logspace(—2,10gl0(10),50);
N1=4xT./ (pi*Al);

figure(l);clf

plot (real (GG) , imag (GG) ) ;
axis([—10 1 —10 10]);

axis([—8 .1 —4 41);

grid on;hold on;

plot (real(—1./N1),imag(—1./N1),'r");
plot (real (GG2) ,imag (GG2), 'ro');
hold off;

xlabel ('Real');ylabel ('"Imag');

WoWw oW oW oW W W W W W
© o 9N O A s W@ N = O

40 h:legend({'(?','—}G'},'Location','NorthEast','interpreter','latex');

41 title(['With a Relay, K=',num2str(K),', A=',num2str(—real (GG2)*4*T/pi)])
42

43 A2=logspace (logl0(T),logl0(10),50);

44 N2=(2/pi)* (asin(T./A2)+(T./A2) .xsqrt (1—(T./A2)."2));

45 figure(5);clf

46 plot (A2,—1./N2, [0 5]"', [real (GG2) real(GG2)],'k—"');grid on

47 axis ([l 1.75 =2 —=0.9]1);

48 1f real (GG2) < —1

49 Asat=fsolve('Nsat', [1]);
50 else

51 Asat=inf;

52 end

53
54 figure(2);clf

55 plot (real (GG),imag(GG));axis([—8 .1 —4 417);

56 grid on;hold on;

57 plot(real(—1./N2),imag(—1./N2),'r");

58 1f real (GG2) < —1

59 plot (real (GG2), imag (GG2), 'ro');

60 end

61 hold off;

62 xlabel('Real');ylabel('Imag');

63 h:legend({'G','—~£'},'Location','NorthEast','intorprctor','latox'L

N
64 title(['With a Saturation , K=',num2str(K),' A=',num2str (Asat)])

65
66 Delta=T/3;

67 A3=logspace (logl0 (Delta),1,200);

68 N3=(4xT./(A3xpi)) .* (sqgrt(l—(Delta./A3)."2)—sqrt(—1)«*Delta./A3);
69 figure(3);clf

70 plot (real (GG), imag(GG)) ;

71 axis([—5 .1 —1 11);

72 grid on;hold on;

73 plot(real(—1./N3),imag(—1./N3), 'r");
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74 ii=find (abs (imag(GG) + (Deltaxpi)/ (4xT)) < .05)
75  GG3=GG(ii);Ahyst=fsolve ('Nhyst', [2])
76 plot (real (GG3),imag(GG3),'ro'");
77 hold off;
78 xlabel ('Real');ylabel('Imag');
79 h=legend ({'G' , '—% ' }, 'Location', "NorthEast', '"interpreter', 'latex'");
80 title(['With a Relay with Hysteresis, =',num2str (K),"' A=',num2str (Ahyst)])
81
82 figure(4);clf
83 A2=[0 A2];N2=[1 N2];
84 semilogy (Al,N1,A2,N2, 'k—"');grid on
s5 xlabel ('A', 'Interpreter', 'latex');ylabel ('N', 'Interpreter', 'latex');
86 legend('Relay', 'Saturation', 'Location', 'NorthEast');
87 axis ([0 5 le—1 201);
88
89 sim('RL1'");sim('RL2");sim('RL3");
90
91 figure(6)
92 plot (RL(:,1),RL(:,2))
93 hold on
94 plot(RL2(:,1),RL2(:,2),'g—")
95 plot (RL3(:,1),RL3(:,2),'r:")
96 hold off
97 legend('Relay', 'Saturation', "Hyst', 'Location', "NorthEast');
98 grid on
99 xlabel('z', 'Interpreter', 'latex');
100 ylabel ('z', 'Interpreter', 'latex');
101 title(['Sim response with different NLs, K=',num2str (K)])
102
103 if K==1.5
104 figure (1) ;export_fig G_.exampl —pdf
105 figure (2) ;export_-fig G.examp2 —pdf
106 figure (3) ;export_fig G.examp3 —pdf
107 figure (4) ;export_-fig G.examp4 —pdf
108 figure (6) ;export_fig G_.examp6 —pdf
109 elseif K==1
110 figure(l);export_fig G_exampla —pdf
111 figure (2) ;export_fig G.examp2a —pdf
112 figure (3);export_-fig G.examp3a —pdf
113 figure (6) ;export_fig G_examp6a —pdf
114 else
115 figure(l);export_fig G_examplb —pdf
116 figure (2);export_fig G.examp2b —pdf
117 figure (3);export_fig G_examp3b —pdf
118 figure (6) ;export_fig G.exampbb —pdf
119 end
1 function y=Nsat (3);
2 global T GG2
3
4 N2=(2/pi)*(asin(T/RA)+(T/A) xsqrt (1—(T/A) "2));
5 y=—1/N2—real (GG2) ;
6
7 end
1 function y=Nhyst (A);
2 global T GG3 Delta
3
4 neginvN3=— (Axpi/ (4xT)) *sqrt (1—(Delta/A) "2) —sqrt (—1) » (Deltaxpi) / (4T)
5 y=real (neginvN3)—real (GG3)
6
7 end
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