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NL Example


Another classic example – Van Der Pol equation1:• 

ẍ + α(x 2 − 1)ẋ + x = 0 

which can be written as linear system 
α 

G(s) = 
s2 − αs + 1


in negative feedback with a nonlinear function f (x, ẋ) = x2ẋ


0 
f (x, ẋ) G(s)

−x(t) q(t) x(t)


−


• Would expect to see different behaviors from the system depending 
on the value of α 
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• Of particular concern is the existence of a limit cycle response 

• Sustained oscillation for a nonlinear system, of the type above 

1Slotine and Li, page 158 
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•	 In this case the signal x(t) would be of the form of an oscillation 
x(t) = A sin(ωt) so that ẋ(t) = Aω cos(ωt) 

• Note that A and ω are not known, and may not actually exist. 

•	 Given the form of x(t), we have that 

q(t) = −x 2 ẋ = −A2 sin2(ωt)Aω cos(ωt) 
A3ω 

=	 − 
4 

(cos(ωt) − cos(3ωt)) 

•	 Thus the output of the nonlinearity (input of the linear part) contains 
the third harmonic of the input 

• Key point: since the system G(s) is low pass, expect that this 
third harmonic will be “sufficiently attenuated” by the linear sys­
tem that we can approximate 

A3ω 
q(t) = −x 2 ẋ ≈ − cos(ωt)

4 
A2	 d 

= [−A sin(ωt)]
4	 dt

Note that we can now create an effective “transfer function” of• 
this nonlinearity by defining that: 

A2jω 
q = N(A,ω)(−x) N(A,ω) = ⇒	

4 
which approximates the effect of the nonlinearity as a frequency re­
sponse function. 

N(A,ω) G(s)
−x(t) q(t)	 x(t)0 

− 
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•	 What are the implications of adding this nonlinearity into the feedback 
loop? 

• Can approximately answer that question by looking at the stability 
of G(s) in feedback with N . 

x = A sin(ωt) = G(jω)q = G(jω)N(A,ω)(−x) 
which is equivalent to: 

(1 + G(jω)N(A,ω))x = 0 

that we can rewrite as: 

A2(jω) α 
1 +	 = 0 

4 (jω)2 − α(jω) + 1


which is only true if A = 2 and ω = 1


•	 These results suggest that we could get sustained oscillations in this 
case (i.e. a limit cycle) of amplitude 2 and frequency 1. 

• This is consistent with the response seen in the plots - independent 
of α we get sustained oscillations in which the x(t) value settles 
down to an amplitude of 2. 

• Note that α does impact the response and changes the shape/fea­
tures in the response. 

• Approach (called Describing Functions) is generalizable....
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Describing Function Analysis


• Now consider a more general analysis of the describing function ap­
proach. 

•	 In this case consider the input to the nonlinearity to be x(t) = 
A sin ωt. 

• Would expect that the output y = f (x) is a complex waveform, 
which we represent using a Fourier series of the form: 

∞
y(t) = b0 + (an sin nωt + bn cos nωt) 

n=1 

•	 So it is explicit that the output of the nonlinearity contains multiple 
harmonics of the ingoing signal. 

• In general we would expect these harmonics to pass through the 
system G(s) and show up in the input to the nonlinearity 

• Would then have a much more complicated input for x(t), leading 
to a more complex output y(t) non-feasible analysis path ⇒ 

•	 Need approximate approach, so assume 

• The fundamental yf = a1 sin ωt+b1 cos ωt is significantly larger 
in amplitude than the harmonics 

• The linear system G(s) acts as a low-pass that attenuates the 
harmonics more strongly than the fundamental. 
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•	 As a result, can approximate y(t) as yf , and then the describing 
function of the nonlinearity becomes 

yf
N = 

x 

•	 Using Fourier analysis, can show that � 2π/ω	 � 2π/ω ω	 ω 
a1 = y(t) sin ωt dt b1 = y(t) cos ωt dt 

π 0 π 0 

• Note that will often find that N is a function of the amplitude A 
and the frequency ω. 

• Simple example: ideal relay y = T if x ≥ 0, otherwise y = −T . 
Then (setting ω = 1 for simplicity, since the solution isn’t a function 
of ω) � 2π � π1	 2 4T 

a1 = y(t) sin t dt = T sin t dt = 
π	 0 π 0 π 

• Nonlinearity is odd (i.e., y(−t) = −y(t)), so bi = 0 ∀ i 

So we have •	
4T 

N = 
πA 

so the equivalent gain decreases as the input amplitude goes up. 

• Makes sense since the output is limited, so effective gain of the 
nonlinearity must decrease as the amplitude of the input goes up 
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Saturation Nonlinearity 

Classic nonlinearity is the saturation function •	 ⎧ ⎨ T if e > T 
u = f (e) = ⎩ 

e if − T ≤ e ≤ T 
−T if e < −T 

• Outputs the signal, but only up to some limited magnitude, then 
caps the output to a value T . 

Saturation is an odd function • 

•	 Describing function calculation is (as before bi = 0): 

Assume e(t) = A sin ωt and A > T , and find ψT so that 

T 
e(tT ) = A sin ψT = T ψT = arcsin ⇒	

A 

• Set ψ = ωt, so that dψ =	ωdt � π/24ω	 dψ 
a1	 = y(t) sin ψ 

π	 ω � ψ
0 
T	

� π/24	 4 
= A sin ψ sin ψ dψ + T sin ψ dψ 

π	 0 π ψT� ψT 
� π/24A	 4T 

= A sin2 ψ dψ + sin ψ dψ 
π 0	 π ψT �	 � � �2
2A T 2T T 

= arcsin + 1 −
π A π A 

So if A > T the DF is given by •	 ⎡ � ⎤ �	 � � � � �2
2 T T	 T 

N(A) = ⎣arcsin + 1 − ⎦ 
π A A	 A 

and if A < T , then N(A) = 1.
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Odd Nonlinearities with Memory


•	 Many of the DF are real, but for NL with delay, hysteresis, can get 
very complex forms for N that involve phase lags. 

• N has both real and imaginary parts 

•	 Example: relay with hysteresis (also known as a Schmitt trigger) 

f (e) 

T 
Δ e 

−T 

• Converts input sine wave to square wave, and also introduces phase 
shift, as change from −1 to +1 occurs Δ after input signal has 
changed sign. 

If ψΔ = arcsin(Δ), then •	 A �� ψΔ	
� π � 

2T	 4T Δ 
b1 = 

π 0 
− cos ψ dψ + 

ψΔ 

cos ψ dψ = − 
π A 

�� ψΔ	
� π � � �2

2T	 4T Δ 
a1	 = 

π 0 
− sin ψ dψ + 

ψΔ 

sin ψ dψ = 
π 

1 − 
A 

Thus we have •	 ⎡� ⎤ � �2
4T	 Δ Δ 

N(A) = ⎣ 1 − − j ⎦ 
Aπ	 A A 

• Where the complex term arises from the phase shift from a sin 
input to a cos output. 
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Limit Cycle Analysis


•	 Since N is an equivalent linear gain, the stability of the loop involving 
both N and G is given by the condition that there be a nonzero 
solution to the equation 

−1 
GN + 1 = 0 G = ⇒ 

N 

•	 Graphically what this will look like is an intersection between the 
Nyquist plot of G(s) and the DF (−1/N) 

• If N is real, then −1/N is along the negative real line 

•	 The intersection point gives two values: 

• ω from G(jω) at the intersection point gives the frequency of the 
oscillation 

• A from the expression for N for the particular value associated 
with the intersection point. 
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DF Analysis Example 

Plant: G(s) = K with relay nonlinearity: •	 s(T1s+1)(T2s+1) 

f (e) = 
T if e ≥ 0 

−T if e < 0 

•	 Describing function for f given by N = 4T/(πA), and thus 

1 πA −
N 

= − 
4T 

which is on negative real line moving to left as A increases. 

• Nyquist plot of G(s) will cross the real line at 

KT1T2 
s = −

(T1 + T2) 

with corresponding ω = 1/
√
T1T2 

• Graphical test: 
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Fig. 1: DF graphical test – note that the DF is on the negative real line, parameterized 
by A, whereas the transfer function of G is parameterized by ω 
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XY Graph 1

To Workspace

RL

Step

State -Space

x' = Ax+Bu
 y = Cx+Du

Relay

Fig. 2: Typical simulation setup


Fig. 3: System initially forced a little (green) and a lot (blue), and then both re­
sponses converge to the same limit cycle 

• Can show that the expected amplitude of the limit cycle is: 

4TKT1T2
A = 

π(T1 + T2) 

• Compare with nonlinear simulation result: 

• Can we prove that this limit cycle is stable or unstable? 
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•	 Now consider the same system, but a saturation nonlinearity instead. 

•	 For the graphical test, note that −1/N is real, and very similar to 
the result for a relay 
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Fig. 4: Comparison of N for relay and saturation 

• The slight difference being in resulting amplitude of limit cycle
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• Now consider the system with a relay hysteresis with Δ = T/3 

First note that if N(A) = F − jH, −1 = F +jH and in this • ⇒ N F 2+H2 

case ⎛� ⎞2� �2 � �2 � �2 � �2 � �2
4T Δ 4T Δ 4T 

F 2+H2 = ⎝ 1 − ⎠ + = 
Aπ A Aπ A Aπ 

so we have ⎡� ⎤

−1

= 

� 
4T 

�−2 � 
4T 

�⎣ 
� 
Δ 
�2 

+ j 
Δ⎦


N 
− 

Aπ Aπ 
1 − 

A A
⎡� ⎤ �� �2 � �2
Aπ Δ Δ Aπ Δ πΔ 

= − 
4T 

⎣ 1 − 
A 

+ j
A 
⎦ = − 

4T 
1 − 

A 
− j 

4T 

• So now use this to find when �(G(jωc)) = −πΔ , and then use4T 
�(G(jωc)) to find A. 
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Fig. 5: Test for limit cycle for a relay with hysteresis, K = 1.5, Δ = T/3
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Sim response with different NLs, K=1.5
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Fig. 6: Simulation comparison of all 3 types of nonlinearities with K = 1.5. Simu­
lation results agree well with the predictions. 
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• Repeat the analysis with K = 1 to get the following plots 

• Note greater separation in the amplitudes 
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Fig. 7: Repeat all simulations with K = 1
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•	 Repeat the analysis with K = 0.7 to get the following plots 

•	 Now note that the saturation nonlinearity does not lead to a limit 
cycle 
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Fig. 8: Repeat all simulations with K = 0.7
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Limit Cycle Stability


•	 Stability analysis is similar to that used for linear systems, where the 
concern is about encirclements of critical point s = −1. 

• Difference here: use the −1/N(A) point as “critical point”. 

•	 Need to consider what the impact might be of a perturbation to 
amplitude A if a limit cycle is initiated. 

•	 In cases considered, an increase in A would correspond to a shift to 
the left of the −1/N(A) point in the s-plane 

• With that change, G(s) would not encircle the critical pt, the 
response would be stable and the amplitude of the signal (A) 
would to decrease 

• Since the perturbation increase A, and response decreases it, the 
limit cycle is stable. 

•	 Similarly, if a decrease in A corresponds to a shift to the right of the 
−1/N(A) point in the s-plane 

• G(s) would now encircle the critical point, the response would be 
unstable and the signal amplitude (A) would increase 

• Since perturbation decreases A, and response increases it, limit 
cycle is stable. 

•	 So limit cycle stability hinges on −1/N(A) intersecting Nyquist plot 
with “increasing A pointing to the left of G(s)” 
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Example

Re

Im

USU
A

Stable L.C.

Unstable L.C.

E. Frazzoli (MIT) Lecture 23: Describing Functions April 14, 2008 10 / 11
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Code: Describing Function Analysis 

1 % Examples of describing ftns

2 % Jonathan How

3 % Oct 2009

4 %

5 set(0,'DefaultLineLineWidth',1.5)

6 set(0,'DefaultAxesFontName','arial');set(0,'DefaultTextFontName','arial')

7 set(0,'DefaultlineMarkerSize',8);set(0,'DefaultlineMarkerFace','r')

8 set(0, 'DefaultAxesFontSize', 12);set(0, 'DefaultTextFontSize', 12);

9 set(0,'DefaultFigureColor','w', 'DefaultAxesColor','w',...


10 'DefaultAxesXColor','k', 'DefaultAxesYColor','k',... 
11 'DefaultAxesZColor','k','DefaultTextColor','k') 
12 % 
13 %clear all 
14 global T GG2 GG3 Delta 
15 

16 if 0 
17 T 1=3;T 2=2;K=1.5;T=1; 
18 elseif 0 
19 T 1=3;T 2=2;K=1;T=1; 
20 else 
21 T 1=3;T 2=2;K=0.7;T=1; 
22 end 
23 

24 SS=−(K*T 1*T 2)/(T 1+T 2); 
25 G=tf(K,conv([T 1 1 0],[T 2 1])); 
26 omega=logspace(−3,3,400);GG=freqresp(G,omega);GG=squeeze(GG); 
27 omega2=1/sqrt(T 1*T 2);GG2=freqresp(G,omega2);GG2=squeeze(GG2); 
28 

29 A1=logspace(−2,log10(10),50); 
30 N1=4*T./(pi*A1); 
31 figure(1);clf 
32 plot(real(GG),imag(GG)); 
33 axis([−10 1 −10 10]); 
34 axis([−8 .1 −4 4]); 
35 grid on;hold on; 
36 plot(real(−1./N1),imag(−1./N1),'r'); 
37 plot(real(GG2),imag(GG2),'ro'); 
38 hold off; 
39 xlabel('Real');ylabel('Imag'); 

1 
40 h=legend({'G','− '},'Location','NorthEast','interpreter','latex');

N 
41 title(['With a Relay, K=',num2str(K),', A=',num2str(−real(GG2)*4*T/pi)]) 
42 

43 A2=logspace(log10(T),log10(10),50); 
44 N2=(2/pi)*(asin(T./A2)+(T./A2).*sqrt(1−(T./A2).ˆ2)); 
45 figure(5);clf 
46 plot(A2,−1./N2,[0 5]',[real(GG2) real(GG2)],'k−−');grid on 
47 axis([1 1.75 −2 −0.9]); 
48 if real(GG2) < −1 
49 Asat=fsolve('Nsat',[1]); 
50 else 
51 Asat=inf; 
52 end 
53 

54 figure(2);clf

55 plot(real(GG),imag(GG));axis([−8 .1 −4 4]);

56 grid on;hold on;

57 plot(real(−1./N2),imag(−1./N2),'r');

58 if real(GG2) < −1

59 plot(real(GG2),imag(GG2),'ro');

60 end

61 hold off;

62 xlabel('Real');ylabel('Imag');


1 
63 h=legend({'G','− '},'Location','NorthEast','interpreter','latex');

N 
64 title(['With a Saturation , K=',num2str(K),' A=',num2str(Asat)]) 
65 

66 Delta=T/3;

67 A3=logspace(log10(Delta),1,200);

68 N3=(4*T./(A3*pi)).*(sqrt(1−(Delta./A3).ˆ2)−sqrt(−1)*Delta./A3);

69 figure(3);clf

70 plot(real(GG),imag(GG));

71 axis([−5 .1 −1 1]);

72 grid on;hold on;

73 plot(real(−1./N3),imag(−1./N3),'r');
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74 ii=find(abs(imag(GG) + (Delta*pi)/(4*T)) < .05)

75 GG3=GG(ii);Ahyst=fsolve('Nhyst',[2])

76 plot(real(GG3),imag(GG3),'ro');

77 hold off;

78 xlabel('Real');ylabel('Imag');


1 
79 h=legend({'G','− '},'Location','NorthEast','interpreter','latex');

N 
80 title(['With a Relay with Hysteresis, K=',num2str(K),' A=',num2str(Ahyst)])

81


82 figure(4);clf

83 A2=[0 A2];N2=[1 N2];

84 semilogy(A1,N1,A2,N2,'k−−');grid on

85 xlabel('A','Interpreter','latex');ylabel('N ','Interpreter','latex');

86 legend('Relay','Saturation','Location','NorthEast');

87 axis([0 5 1e−1 20]);

88


89 sim('RL1');sim('RL2');sim('RL3');

90


91 figure(6)

92 plot(RL(:,1),RL(:,2))

93 hold on

94 plot(RL2(:,1),RL2(:,2),'g−−')

95 plot(RL3(:,1),RL3(:,2),'r:')

96 hold off

97 legend('Relay','Saturation','Hyst','Location','NorthEast');

98 grid on

99 xlabel('x','Interpreter','latex');


100 ylabel('ẋ','Interpreter','latex');

101 title(['Sim response with different NLs, K=',num2str(K)])

102


103 if K==1.5

104 figure(1);export fig G examp1 −pdf

105 figure(2);export fig G examp2 −pdf

106 figure(3);export fig G examp3 −pdf

107 figure(4);export fig G examp4 −pdf

108 figure(6);export fig G examp6 −pdf

109 elseif K==1

110 figure(1);export fig G examp1a −pdf

111 figure(2);export fig G examp2a −pdf

112 figure(3);export fig G examp3a −pdf

113 figure(6);export fig G examp6a −pdf

114 else

115 figure(1);export fig G examp1b −pdf

116 figure(2);export fig G examp2b −pdf

117 figure(3);export fig G examp3b −pdf

118 figure(6);export fig G examp6b −pdf

119 end


1 function y=Nsat(A); 
2 global T GG2 
3 

4 N2=(2/pi)*(asin(T/A)+(T/A)*sqrt(1−(T/A)ˆ2)); 
5 y=−1/N2−real(GG2); 
6 

7 end 

1 function y=Nhyst(A); 
2 global T GG3 Delta 
3 

4 neginvN3=−(A*pi/(4*T))*sqrt(1−(Delta/A)ˆ2)−sqrt(−1)*(Delta*pi)/(4*T) 
5 y=real(neginvN3)−real(GG3) 
6 

7 end 
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