Topic #11

16.31 Feedback Control Systems

State-Space Systems
Full-state Feedback Control
How do we change the poles of the state-space system?
Or, even if we can change the pole locations.
Where do we change the pole locations to?

How well does this approach work?

Reading: FPE 7.3
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Full-state Feedback Controller

e Assume that the single-input system dynamics are given by
x(t) = Ax(t) + Bu(t)
y(t) = Cx(t)
so that D = 0.

e The multi-actuator case is quite a bit more complicated as we
would have many extra degrees of freedom.

e Recall that the system poles are given by the eigenvalues of A.

e Want to use the input u(t) to modify the eigenvalues of A to
change the system dynamics.

el y (1)
- ame

e Assume a full-state feedback of the form:
u(t) =r — Kx(t)
where r is some reference input and the K is R*"

e If r = 0, we call this controller a regulator

e Find the closed-loop dynamics:

x(t) = Ax(t)+ B(r — Kx(t))
= (A— BK)x(t)+ Br
= Aux(t) + Br

y(t) = Cx(t)
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e Objective: Pick K so that A, has the desired properties, e.g.,

e A unstable, want A, stable
e Put 2 poles at —2 £+ 2i

e Note that there are n parameters in K and n eigenvalues in A, so it
looks promising, but what can we achieve?

e Example #1: Consider:

e Thendet(s] — A) = (s—1)(s —2) —1=5*—3s+1=0 so the
system is unstable.

o Define u=— | ky ko | x(t) = —Kx(t), then
11 1

(1 — Kk 1=k
1 9

which gives

det(sI — Ay) = s>+ (k1 —3)s + (1 — 2k + k) = 0

e Thus, by choosing k1 and ks, we can put A\;(A.) anywhere in the
complex plane (assuming complex conjugate pairs of poles).
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e To put the poles at s = —5, — 6, compare the desired characteristic
equation
(s+5)(s+6)=s"+11s+30=0

with the closed-loop one
S2+(/€1—3)S—|—(1—2k1—|—/€2)20

to conclude that

ki —3=11 ki1 =14
1 — 2k + ko =30 ko = 57

so that K = [ 14 57 ] which is called Pole Placement.

e Of course, it is not always this easy, as lack of controllability might
be an issue.

e Example #2: Consider this system:

X(t)—[éilx(t)Jr[é]u

with the same control approach

11 1 1 —k 11—k
Ay=A— BK = — ki ko | =
: [0 2] [O][ 1 k] [ 0 9 ]

so that
det(sl — Ay)=(s—1+k)(s—2)=0

So the feedback control can modify the pole at s = 1, but it cannot
move the pole at s = 2.

e System cannot be stabilized with full-state feedback.

e Problem caused by a lack of controllability of the €* mode.
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e Consider the basic controllability test:

L]

M,=[B|AB | =

So that rank M, =1 < 2.

e Modal analysis of controllability to develop a little more insight

11
A= ! ] . decompose as AV =VA =A=V"1AV

0 2
10 11
V =
02] [Ol]

x(t) = Ax(t)+ Bu =~ — i=A2+V 'Bu

][] 1o]

so that the dynamics in modal form are:
. 10 N 1
z = 2z U
0 2 0

e With this zero in the modal B-matrix, can easily see that the mode
associated with the z, state is uncontrollable.

where

A:

Convert

where z = [ 21 29 }T. But:

VB =

e Must assume that the pair (A, B) are controllable.
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Ackermann’s Formula

e The previous outlined a design procedure and showed how to do it by
hand for second-order systems.

e Extends to higher order (controllable) systems, but tedious.

e Ackermann’s Formula gives us a method of doing this entire design
process is one easy step.

K=[0...01]M;'04A)
o M, = [B AB ... A”_lB} as before

e O4(s) is the characteristic equation for the closed-loop poles, which
we then evaluate for s = A.

e Note: is explicit that the system must be controllable because
we are inverting the controllability matrix.

o Revisit Example # 1: ®4(s) = s> + 115+ 30
1 |11
0 0] | o1

+ 307

11
L 2

—

M,=[B|AB | =

So

e Automated in Matlab: place.m & acker.m (see polyvalm.m too)
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Origins of Ackermann’s Formula

e For simplicity, consider third-order system (case #2 on 6-77), but
this extends to any order.

—a1 —ag9 —as 1
A= 1 0 0 B=|0| C=][b by bs]
0 1 0 0

e See key benefit of using control canonical state-space model

e This form is useful because the characteristic equation for the
system is obvious = det(s] — A) = s + a;5* + ass + a3 = 0

e Can show that

—a] —ay —as 1
Aq=A—-BK = 10 0| —=[0| [k ko ks]
0 1 0 0
| —a] — kl —a9 — ]CQ —as — ]€3
= 1 0 0
i 0 1 0

so that the characteristic equation for the system is still obvious:

Du(s) = det(sl — Ay)
= 574 (a1 + k1)s* 4 (ag + ko)s + (a3 + k3) = 0
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e Compare with the characteristic equation developed from the desired
closed-loop pole locations:

®y(s) = 57+ (a1)s® + (aa)s + (a3) = 0
to get that

CL1—|—]€1:Q/1 ]ﬁ:a/l—al

an"—kn:an kn:an_an

e To get the specifics of the Ackermann formula, we then:

e Take an arbitrary A, B and transform it to the control canonical
form (x(t) ~ z(t) = T~ 'x(1))
¢ Not obvious, but M, can be used to form this T’

e Solve for the gains K using the formulas at top of page for the

state z(t)
u(t) = Kazl(t)

e Then switch back to gains needed for the state x(t), so that

K=KT"'=u=Kz(t) = Kx(t)

e Pole placement is a very powerful tool and we will be using it for most
of this course.
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Reference Inputs

e So far we have looked at how to pick K to get the dynamics to have
some nice properties (i.e. stabilize A)

e The question remains as to how well this controller allows us to track
a reference command?

e Performance issue rather than just stability.

e Started with

x(t) = Ax(t)+ Bu y=Cx(t)
u = r— Kx(t)

e For good tracking performance we want

y(t) = r(t) ast — oo

e Consider this performance issue in the frequency domain. Use the
final value theorem:

lim y(t) = lim sY'(s)

t—00 s—0

Thus, for good performance, we want
Y(s)

sY(s) ~ sR(s)ass -0 = =
R(S> s=0

e So, for good performance, the transfer function from R(s) to Y(s)
should be approximately 1 at DC.
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e Example #1 continued: For the system
. 11 1
x(t) = 12]X(t)+[()]u
y = |1 0]x(t)
e Already designed K = [ 14 57] so the closed-loop system is
x(t) = (A— BK)x(t) + Br

y = Ox(1)
which gives the transfer function
Y(s) ~1
= C(sI—-(A—BK)) B
R(S) (S ( >)
~1
s+ 13 56 1
=110
[ } [ —1 s5—=2 [ 0 ]
B s—2
524 11s+ 30

e Assume that r(t) is a step, then by the FVT
Y(s)
R(S> s=0

e So our step response is quite poor!

2
=——F11
30#
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e One solution is to scale the reference input r(¢) so that
u= Nr — Kx(t)

o N extra gain used to scale the closed-loop transfer function

e Now we have

(1) = (A— BK)x(t) + BNr
y = COx(t)

— C(sI —(A— BK))"' BN = Gu(s)N

If we had made N = —15, then
Y(s)  —15(s —2)
R(s) s2411s+ 30

so with a step input, y(t) — 1 as t — 0.

e Clearly can compute

N =Ga(0)"' =~ (C(A= BK)'B) "

e Note that this development assumed that r was constant, but it could
also be used if 7 is a slowly time-varying command.
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e 5o the steady state step error is now zero, but is this OK?

e See plots — big improvement in the response, but transient a bit
weird.

Step Response

Y output

anemnnnnn (=r-Kx
u=Nbar r-Kx |
T -

AL 1 L L L =
0 05 1 15 2 25 3 35 4
time (sec)

r

Fig. 1: Response to step input with and without the N correction.

Code: Step Response (stepl.m)

% full state feedback for topic 13
% reference input issues

a=[1 1;1 2];b=[1 0]"';c=[1 0];d=0;
k=[14 571;

Nbar=—15;

sysl=ss(a—bx*k,b,c,d);

sys2=ss (a—bxk,bxNbar,c,d);
t=[0:.025:47];

10 [y,t,x]=step(sysl,t);

11 [y2,t2,x2]=step(sys2,t);

© 0w N U A W N e

13 plot(t,y,'—',t2,y2, 'LineWidth',2);axis ([0 4 —1 1.2]);grid;
14 legend('u=r—Kx', 'u=Nbar r—Kx', 'Location', 'SouthEast"')
15 xlabel ('time (sec)');ylabel ('Y output');title('Step Response')

16 print —dpng —r300 stepl.png
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Pole Placement Examples

e Simple example:
8-14-20

G(s) =
(5) (s +8)(s+ 14)(s + 20)
e Target pole locations —12 + 12i, —20

Step Response

sesmmsess =r-Kx
u=Nbar r-Kx

08

216 3520

04+

02

Ol
0 0.1

L 1 L 1 L
0.5 06 07 08 08 1

time (sec)

1 1
03 04

16.30/31

11-12

Fig. 2: Response to step input with and without the N correction. Gives the desired

steady-state behavior, with little difficulty!

" Closed-loop Freq Response
10 T

10° 10' 10°
Freq (rad/sec)

Fig. 3: Closed-loop frequency response. Clearly shows unity DC gain
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e Example system with 1 unstable pole

0.94
s?2 — 0.0297
e Target pole locations —0.25 + 0.251

G(s) =

Step Response

sssasenes =KX
u=Nbar r-Kx

os | 0.13298

o8 | 05 0.1547

1 1 1 1
0 5 10 15 20 25 30
time (sec)

Fig. 4: Response to step input with and without the IV correction. Gives the desired
steady-state behavior, with little difficulty!

Closed-loop Freq Response

u=r-Kx
u=Mbar r-Kx
0
10
o 10"
10°
10.3 -3 -2 -1 0 1
10 10 10 10 10

Freq (rad/sec)

Fig. 5. Closed-loop frequency response. Clearly shows unity DC gain
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e OK, so let's try something challenging. ..

0.8

Y output
o
[+2]

041

02

G(s) =

8- 1420

Step Response

(s —8)(s — 14)(s — 20)
e Target pole locations —12 + 12i, —20

16.30/31 11-14

i I

sesenenss y=r-Kx

u=Nbar r-Kx

0

2.5714
86 216 8000
0 0.4 0:5 076 08 UI.Q 1
time (sec)

Fig. 6: Response to step input with and without the IV correction. Gives the desired
steady-state behavior, with little difficulty!

10°

Closed-loop Freq Response

— u=r-Kx ]
u=Nbar r-Kx |-

Freq (rad/sec)

10°

Fig. 7: Closed-loop frequency response. Clearly shows unity DC gain
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e The worst possible. .. Unstable, NMP!!

B (s —1)
)= 63

e Target pole locations —1 + i

Unstable, NMP system Step Response

i I
sssasenes y=r-KX
u=Nbar r-Kx

08

time (sec)

Fig. 8: Response to step input with and without the N correction. Gives the desired
steady-state behavior, with little difficulty!

1

Closed-loop Freq Response
10 v T

u=r-Kx 1
u=Nbar r-Kx

1
107 10° 10° 10 10°
Freq (rad/sec)

Fig. 9: Closed-loop frequency response. Clearly shows unity DC gain
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FSFB Summary

e Full state feedback process is quite simple as it can be automated in
Matlab using acker and/or place

e With more than 1 actuator, we have more than n degrees of freedom
in the control — we can change the eigenvectors as desired, as well
as the poles.

e The real issue now is where to put the poles. ..

e And to correct the fact that we cannot usually measure the state —
develop an estimator.
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Code: Step Response (step3.m)

1 % Examples of pole placement with FSFB

2 % demonstrating the Nbar modifcation to the reference command

3 %

4 % Jonathan How

5 % Sept, 2010

6 %

7 close all;clear all

8 set (0, 'DefaultLineLineWidth', 2)

9 set (0, 'DefaultlineMarkerSize',10);set (0, 'DefaultlineMarkerFace','b")
10 set (0, 'DefaultAxesFontSize', 14);set (0, 'DefaultTextFontSize', 14);
11
12 % system
13 [a,b,c,d]=tf2ss(8%14x20,conv ([l 8],conv ([l 14],[1 201)));

14 % controller gains to place poles at specified locations

15 k=place(a,b, [-12+12%3;—12—12%3;—201);

16

17 % find the feedforward gains

18 Nbar=—inv (cxinv (a—b=xk) xb) ;

19

20 sysl=ss(a—bxk,b,c,d);

21 sys2=ss (a—bxk,b*Nbar,c,d);

22

23 t=[0:.01:17;

24 [y,t,x]=step(sysl,t);

25 [y2,t2,x2]=step(sys2,t);

26

27 figure(l);clf

28 plot(t,y,'—"',t2,y2, 'LineWidth',2);axis ([0 1 0 1.2]);grid;

29 legend('u=r—Kx', '"u=Nbar r—Kx');xlabel('time (sec)');ylabel ('Y output')
30 title('Step Response')

31 hold on

32 plot(t2([1l end]), [.1 .llxy2(end),'r—");

33 plot(t2([1 end]),[.1 .1]%9%y2(end),'r—");

34 hold off

35

36 text(.4,.6,['k= [ ',num2str (round(kx1000)/1000),"' ]'], 'FontSize',b14)
37 text(.4,.8,['Nbar= ',num2str (round (Nbar+«1000)/1000)], 'FontSize', 14)
38 export_fig triplel —pdf

39

40 figure(l);clf

41 f=logspace(—1,2,400);

42 gcll=freqgresp(sysl, f);

43 gcl2=freqgresp(sys2,f);

44 loglog(f, abs (squeeze(gcll)), f,abs (squeeze (gcl2)), 'LineWidth',2);grid
45 xlabel ('Freqg (rad/sec)')

46 ylabel ('G_{cl}")

47 title('Closed—loop Freq Response')

48 legend ('u=r—Kx', 'u=Nbar r—Kx')

49 export_fig triplell —pdf

50

51 $%%%5%%%%%

54 clear all

56 [a,b,c,d]=tf2ss(8%x14%20,conv ([l —8],conv ([l —14],[1 —20])))
57 k=place(a,b, [—12+12x7;—12—12%73;—20])

58 % find the feedforward gains
59 Nbar=—inv (c*inv (a—bxk) xb) ;

61 sysl=ss(a—bxk,b,c,d);
62 sys2=ss (a—bxk,b*Nbar,c,d);

64 t=[0:.01:17;
65 [y,t,x]=step(sysl, t);
66 [y2,t2,x2]=step(sys2,t);

67

68 figure(2);clf

69 plot(t,y,'—"',t2,y2, 'LineWidth',2);axis ([0 1 0 1.2])
70 grid;

71 legend('u=r—Kx', 'u=Nbar r—Kx'")

72 xlabel ('time (sec)');ylabel ('Y output');title('Step Response')
73 hold on

74 plot(t2([1 end]),[.1 .1]*xy2(end),'r—");
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75 plot (t2([1 end]), [.1 .1]%9%y2(end),'r—");

76 hold off

77

78 text(.4,.6,['k= [ ',num2str (round(kx1000)/1000),"' ]'], 'FontSize',14)

79 text(.4,.8,['Nbar= ',num2str (round (Nbar+«1000)/1000)], 'FontSize',14)
8o export_fig triple2 —pdf

81

82 figure(2);clf

83 f=logspace(—1,2,400);

84 gcll=freqgqresp(sysl, f);

85 gcl2=freqresp(sys2,f);

86 loglog(f,abs (squeeze(gcll)), f,abs (squeeze(gcl2)), 'LineWidth',2);grid
87 xlabel ('Freqg (rad/sec)')

ss ylabel ('G_{cl}")

89 title('Closed—loop Freqg Response')

90 legend('u=r—Kx', 'u=Nbar r—Kx'")

91 export_fig triple2l —pdf

92

93 3%%%%%%%
94 % exampl
95 clear al
96

97 [a,b,c,d]l=tf2ss(.94,[1 0 —0.0297])
98 k=place(a,b, [—1+3;—1—731/4)

99 % find the feedforward gains

100 Nbar=—inv (c*inv (a—b=xk) xb) ;

102 sysl=ss(a—bxk,b,c,d);

103 sys2=ss (a—bx*k,bxNbar,c,d);
104

105 t=[0:.1:30];

106 [y,t,x]=step(sysl,t);

107 [y2,t2,x2]=step(sys2,t);

108
109 figure(3);clf
110 plot(t,y,'—"'",t2,y2, 'LinewWidth',2);axis ([0 30 0 21])

111 grid;

112 legend('u=r—Kx', 'u=Nbar r—Kx')

113 xlabel ('time (sec)');ylabel ('Y output');title('Step Response')
114 hold on

115 plot (t2([1 end]),[.1 .1]xy2(end), ' 'v—");

116 plot (t2([1 end]),[.1 .1]1x9xy2(end),'r—");

117 hold off

118

119 text (15,.6, ['k= [ ',num2str (round(k*1000)/1000)," 1'], 'FontSize',14)

120 text (15,.8, ['Nbar= ',num2str (round (Nbar+1000)/1000)], 'FontSize',14)
121 export_fig triple3 —pdf

123 figure(3);clf

124 f=logspace(—3,1,400);

125 gcll=freqresp(sysl, f);

126 gcl2=freqresp(sys2, f);

127 loglog (f, abs (squeeze (gcll)), £, abs (squeeze(gcl2)), 'LineWidth',2) ;grid
128 xlabel ('Freq (rad/sec)')

120 ylabel ('G_{cl}")

130 title('Closed—loop Freq Response')

131 legend('u=r—Kx', 'u=Nbar r—Kx')

132 export_fig triple3l —pdf

3
>
135 % exampl
1

138 [a,b,c,d]l=tf2ss([1 —1],conv ([l 171,[1 —31))
130 k=place(a,b, [[—1+3;—1—311)

140 % find the feedforward gains
141 Nbar=—inv (c*inv (a—b=xk) xb) ;

143 sysl=ss(a—bx*k,b,c,d);
144 sys2=ss (a—bx*k,bxNbar,c,d);

146 t=[0:.1:10];
147 [y,t,x]=step(sysl,t);
148 [y2,t2,x2]=step(sys2,t);

149
150 figure(3);clf
151 plot(t,y,'—'",t2,y2, 'LineWidth',2);axis ([0 10 —1 1.2])
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152

165

grid;

legend ('u=r—Kx', '"u=Nbar r—Kx')

xlabel ('time (sec)');ylabel ('Y output')
title('Unstable, NMP system Step Response')
hold on

plot (t2([1 end]), [.1 .1]lxy2(end), 'r—");

plot (t2([1 end]), [.1 .1]1%9xy2(end),'r—");

hold off

text (5,.6,['k= [ ',num2str (round(k*1000)/1000),"' ]'], 'FontSize',14)

text (5, .8, ['Nbar= ',num2str (round (Nbar«1000) /1000) ], '"FontSize', 14)
export_fig triple4 —pdf

figure(4);clf

f=logspace(—2,2,400);

gcll=freqgresp(sysl, f);

gcl2=freqresp(sys2, f);

loglog (f, abs (squeeze (gcll)), f,abs (squeeze (gcl2)), 'LineWidth', 2);grid
xlabel ('Freq (rad/sec)')

ylabel ('G_{cl}")

title('Closed—loop Freq Response')

legend ('u=r—Kx', 'u=Nbar r—Kx')

export_fig tripled4l —pdf
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