Topic #10

16.30/31 Feedback Control Systems

State-Space Systems

e State-space model features

e Controllability
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Controllability

e Definition: An LTI system is controllable if, for every x*(¢) and
every finite T > 0, there exists an input function u(t), 0 <t < T,
such that the system state goes from x(0) = 0 to x(7") = x*.

e Starting at 0 is not a special case — if we can get to any state
in finite time from the origin, then we can get from any initial
condition to that state in finite time as well. !

e This definition of controllability is consistent with the notion we used
before of being able to “influence” all the states in the system in the
decoupled examples (page 9-77).

e ROT: For those decoupled examples, if part of the state cannot
be “influenced” by u(t), then it would be impossible to move that
part of the state from 0 to x*

e Need only consider the forced solution to study controllability.

¢
Xf(t):/ A7) Bu(r)dr
0

e Change of variables , =t — 7, d7 = —dm gives a form that is a
little easier to work with:

t
Xf(t) = /O 6AT2BU_(t — TQ)dTQ

e Assume system has m inputs.

IThis controllability from the origin is often called reachability.
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e Note that, regardless of the eigenstructure of A, the Cayley-Hamilton

theorem gives
n—1

et = Z Ala(t)
i=0
for some computable scalars «;(t), so that

xi(t) = S (AB) [ amule—nidn = Y (4B
i=0 0 i=0

for coefficients 3,(t) that depend on the input u(7), 0 < 7 <'t.

e Result can be interpreted as meaning that the state x;(¢) is a linear
combination of the nm vectors A'B (with m inputs).

e All linear combinations of these nm vectors is the range space of
the matrix formed from the A’B column vectors:

M.=|B AB A’B --- A"'B]|

e Definition: Range space of M., is controllable subspace of the
system

e If a state x.(t) is not in the range space of M., it is not a linear
combination of these columns = it is impossible for x(¢) to ever
equal x.(t) — called uncontrollable state.

e Theorem: LTI system is controllable iff it has no uncontrol-
lable states.

e Necessary and sufficient condition for controllability is that

rank M, £ rank [B AB A’B --. A"‘lB} =n
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Further Examples

o With Model # 2:

M. = | B AB|

I
1
— Do
|
—
| — |

e rank My =1 and rank M, =2

e So this model of the system is controllable, but not observable.

o With Model # 3:

M, =

e rank My =2 and rank M, =1

e So this model of the system is observable, but not controllable.

e Note that controllability/observability are not intrinsic properties of
a system. Whether the model has them or not depends on the repre-
sentation that you choose.

e But they indicate that something else more fundamental is wrong. . .
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Modal Tests

e Earlier examples showed the relative simplicity of testing observabili-
ty /controllability for system with a decoupled A matrix.

e There is, of course, a very special decoupled form for the state-space
model: the Modal Form (6-77)

e Assuming that we are given the model

x = Ax+ Bu
y = Cx+ Du

and the A is diagonalizable (A = TAT™!) using the transformation

T=1|v - v,
| |

based on the eigenvalues of A. Note that we wrote:

T
_wl —

T =
which is a column of rows.

e [hen define a new state so that x = 7'z, then
7z = T'%x =T '(Ax + Bu)
= (T'AT)z+T 'Bu
— Az+ T 'Bu

y = Cx+ Du
= (CTz+ Du
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e The new model in the state z is diagonal. There is no coupling in the
dynamics matrix A.

e But by definition,

and

e Thus if it turned out that
w! B =0

then that element of the state vector z; would be uncontrollable by
the input wu.

o Also, if
Cv; =0
then that element of the state vector zj would be unobservable with
this sensor.

e Thus, all modes of the system are controllable and observ-
able if it can be shown that

wi B#0 Vi

and

CUj?éO \V/]

October 13, 2010



Fall 2010 16.30/31 10-6

Cancelation

e Examples show the close connection between pole-zero cancelation
and loss of observability and controllability. Can be strengthened.

e Theorem: The mode (\;, v;) of a system (A, B, C, D) is unobserv-

able iff the system has a zero at A; with direction [ %Z ] :

e Proof: If the system is unobservable at \;, then we know

(M —A)y; = 0 ltis a mode

Cv; = 0 That mode is unobservable
Combine to get:
[ ()\ilg A) ] U, = 0
Or
()\2] - A) —B v | 0
C D 0]

which implies that the system has a zero at that frequency as well,

with direction [ 1())2- ] .

e (Can repeat the process looking for loss of controllability, but now
using zeros with left direction [ w! 0 ]
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e Combined Definition: when a MIMO zero causes loss of either
observability or controllability we say that there is a pole/zero cance-
lation.

e MIMO pole-zero (right direction generalized eigenvector) cancela-
tion < mode is unobservable

e MIMO pole-zero (left direction generalized eigenvector) cancela-
tion < mode is uncontrollable

e Note: This cancelation requires an agreement of both the frequency
and the directionality of the system mode (eigenvector) and zero

[%i]or[wa].
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Connection to Residue

e Recall that in modal form, the state-space model (assumes diagonal-

izable) is given by the matrices
D1 wiB
A= B = E C:[Cvl--- C’vn]
Dn w! B

n

for which case it can easily be shown that

G(s) = C(sI —A)'B

1 T
$—p1 wl B

= [Cvl--- Cvn] ;
1 U)TB

§—Pn | n

"\ (Cv)(w!'B
Z( )(w; B)

S — .
i=1 pi

e Thus the residue of each pole is a direct function of the product of
the degree of controllability and observability for that mode.

e Loss of observability or controllability = residue is zero = that
pole does not show up in the transfer function.

e If modes have equal observability Cv; =~ Cv;, but one
w; B> w; B
then the residue of the i mode will be much larger.

e Great way to approach model reduction if needed.
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Weaker Conditions

e Often it is too much to assume that we will have full observability
and controllability. Often have to make do with the following. System
called:

e Detectable if all unstable modes are

e Stabilizable if all unstable modes are

e So if you had a stabilizable and detectable system, there could be
dynamics that you are not aware of and cannot influence, but you
know that they are at least stable.

e That is enough information on the system model for now — will assume
minimal models from here on and start looking at the control issues.
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