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•	 State-space model features 

•	 Observability 

•	 Controllability 
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State-Space Model Features


•	 There are some key characteristics of a state-space model that we 
need to identify. 

• Will see that these are very closely associated with the concepts 
of pole/zero cancelation in transfer functions. 

x

x

•	 Example: Consider a simple system 

6 
G(s) = 

s + 2 
for which we develop the state-space model 

Model # 1	 ẋ = −2x + 2u 

y = 3x 

But now consider the new state space model ¯ T • 

¯

= [x x2]


−2 0
 2
˙̄x

y = 3 0 

Model # 2
 =
 +
 u 
1 

x̄ 

0 −1 

which is clearly different than the first model, and larger. 

But let’s looks at the transfer function of the new model: • 

Ḡ(s) = C(sI −� 
A)−1B � 

+ D ��−1 � � 

= 
� 
3 0 

� 
sI −

−2

0 −1

0 
1

2 

2� � s+2 6 
= 3 0	 = !! 

1 s + 2 
s+1 
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•	 This is a bit strange, because previously our figure of merit when 
comparing one state-space model to another (page 6–??) was whether 
they reproduced the same same transfer function 

• Now we have two very different models that result in the same 
transfer function 

• Note that I showed the second model as having 1 extra state, but 
I could easily have done it with 99 extra states!! 

•	 So what is going on? 

• A clue is that the dynamics associated with the second state of 
the model x2 were eliminated when we formed the product 

Ḡ(s) = 
� 
3 0 

� 2 
s+2 
1 

s+1 

because the A is decoupled and there is a zero in the C matrix 

• Which is exactly the same as saying that there is a pole-zero 
cancelation in the transfer function G̃(s) 

6 6(s + 1) 
=	 � G̃(s) 

s + 2 (s + 2)(s + 1) 

Note that model #2 is one possible state-space model of G̃(s)• 
(has 2 poles) 

•	 For this system we say that the dynamics associated with the second 
state are unobservable using this sensor (defines C matrix). 

• There could be a lot “motion” associated with x2, but we would 
be unaware of it using this sensor. 

September 30, 2010 



� � � � 

� � 

� � 

� � 
� � 

Fall 2010	 16.30/31 9–4 

•	 There is an analogous problem on the input side as well. Consider: 

Model # 1 ẋ = −2x + 2u 

y = 3x


with ¯ T
x = [ x x2]


x̄
−2 0
 2


¯̇

y = 3 2 

xModel # 3
 =
 +
 u 
00 −1 

x̄


which is also clearly different than model #1, and has a different 
form from the second model. 

ˆ
� �� � 

−2 0 
��−1 � 

2 
� 

G(s) = 3 2 sI − 
0 −1 0 � � 2 6 

= 3 2 = !! s+2 s+1 0 s + 2 

•	 Once again the dynamics associated with the pole at s = −1 are 
canceled out of the transfer function. 

But in this case it occurred because there is a 0 in the B matrix• 

•	 So in this case we can “see” the state x2 in the output C = 3 2 , 
but we cannot “influence” that state with the input since 

2 
B = 

0 

• So we say that the dynamics associated with the second state are 
uncontrollable using this actuator (defines the B matrix). 
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•	 Of course it can get even worse because we could have 

¯̇	 x̄x
−2 0
 2


=
 +
 u 
00 −1 

x̄y	 = 3 0 

So now we have • � � ��−1 � � 
� = 

� 
0 
� 

sI −
−2

0 −1

0 
0

2 
G(s) 3 

� � 2 6 
= 3 0 = !! s+2 s+1 0 s + 2 

•	 Get same result for the transfer function, but now the dynamics as­
sociated with x2 are both unobservable and uncontrollable. 

•	 Summary: Dynamics in the state-space model that are uncon­
trollable, unobservable, or both do not show up in the transfer 
function. 

•	 Would like to develop models that only have dynamics that are both 
controllable and observable 
�	called a minimal realization 

• A state space model that has the lowest possible order for the 
given transfer function. 

•	 But first need to develop tests to determine if the models are observ­
able and/or controllable 
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Observability


•	 Definition: An LTI system is observable if the initial state x(0) 
can be uniquely deduced from the knowledge of the input u(t) and 
output y(t) for all t between 0 and any finite T > 0. 

• If x(0) can be deduced, then we can reconstruct x(t) exactly 
because we know u(t) � we can find x(t) ∀ t. 

• Thus we need only consider the zero-input (homogeneous) solution 
to study observability. 

y(t) = CeAt x(0) 

•	 This definition of observability is consistent with the notion we used 
before of being able to “see” all the states in the output of the de-
coupled examples 

• ROT: For those decoupled examples, if part of the state cannot 
be “seen” in y(t), then it would be impossible to deduce that part 
of x(0) from the outputs y(t). 
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•	 Definition: A state x� �= 0 is said to be unobservable if the 
zero-input solution y(t), with x(0) = x�, is zero for all t ≥ 0 

• Equivalent to saying that x� is an unobservable state if


CeAt x � = 0 ∀ t ≥ 0


•	 For the problem we were just looking at, consider Model #2 with 
x� = [ 0 1 ]T = 0� , then 

ẋ̄ = 
−2 0 

x̄ + 
2 

u 
0	 −1 1 

y	 = 3 0 x̄

so � � � � � � e−2t 0 0 
CeAt x � = 3 0 

0 e−t 1 � � 0 
= 3e−2t 0 = 0 ∀ t 

1 

So, x� = [ 0 1 ]T is an unobservable state for this system. 

• But that is as expected, because we knew there was a problem with 
the state x2 from the previous analysis 
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•	 Theorem: An LTI system is observable iff it has no unob­
servable states. 

• We normally just say that the pair (A,C) is observable. 

Pseudo-Proof: Let x� = 0 be an unobservable state and compute 
the outputs from the initial conditions x1(0) and x2(0) = x1(0) + x� 

Then• 
y1(t) = CeAt x1(0) and y2(t) = CeAt x2(0) 

but 

y2(t) = CeAt(x1(0) + x �) = CeAt x1(0) + CeAt x � 

= CeAt x1(0) = y1(t) 

• Thus 2 different initial conditions give the same output y(t), so it 
would be impossible for us to deduce the actual initial condition 
of the system x1(t) or x2(t) given y1(t) 

•	 Testing system observability by searching for a vector x(0) such that 
CeAtx(0) = 0 ∀ t is feasible, but very hard in general. 

Better tests are available. • 
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Theorem: The vector x� is an unobservable state iff •
 ⎤⎡ 
C

CA
⎢⎢⎢⎢⎢⎣

CA2


... 
CAn−1 

⎥⎥⎥⎥⎥⎦

x
� = 0


•	 Pseudo-Proof: If x� is an unobservable state, then by definition, 

CeAt x � = 0 ∀ t ≥ 0 

But all the derivatives of CeAt exist and for this condition to hold, all 
derivatives must be zero at t = 0. Then �� 

=0t CeAt x �


d 
CeAt x � 

dt


= 0 Cx � = 0
⇒


CAeAt x �
 = CAx
� = 0
= 0
 ⇒

t=0


t=0


d2 

CeAt x � 

dt2

CA2 eAt x �
 = CA2 x � = 0
= 0
 ⇒


t=0

t=0


... 

dk 

CeAt x � 

dtk

CAkeAt x �
 = CAk x � = 0
= 0
 ⇒


t=0

t=0


• We only need retain up to the n − 1th derivative because of the 
Cayley-Hamilton theorem. 
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• Simple test: Necessary and sufficient condition for observability is 
that
 ⎤⎡ 

rank Mo
� rank


⎢⎢⎢⎢⎢⎣


C

CA

CA2


... 
CAn−1 

⎥⎥⎥⎥⎥⎦

= n


•	 Why does this make sense? 

The requirement for an unobservable state is that for x� = 0 

Mox � = 0 

• Which is equivalent to saying that x� is orthogonal to each row of 
Mo. 

• But if the rows of Mo are considered to be vectors and these span 
the full n-dimensional space, then it is not possible to find an 
n-vector x� that is orthogonal to each of these. 

• To determine if the n rows of Mo span the full n-dimensional 
space, we need to test their linear independence, which is equiv­
alent to the rank test1 

1Let M be a m × p matrix, then the rank of M satisfies: 
1. rank M ≡ number of linearly independent columns of M 

2. rank	 M ≡ number of linearly independent rows of M 

3. rank	 M ≤ min{m, p} 
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