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16.30/31 Feedback Control Systems 

State-Space Systems 

• System Zeros 

• Transfer Function Matrices for MIMO systems
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Zeros in State Space Models


• Roots of transfer function numerator called the system zeros. 

• Need to develop a similar way of defining/computing them using 
a state space model. 

• Zero: generalized frequency s0 for which the system can have a 
non-zero input u(t) = u0e

s0t, but exactly zero output y(t) ≡ 0 ∀t 

• Note that there is a specific initial condition associated with this 
response x0, so the state response is of the form x(t) = x0e

s0t 

u(t) = u0e
s0t x(t) = x0e

s0t y(t) ≡ 0⇒ ⇒ 

• Given ẋ = Ax + Bu, substitute the above to get: 

x0s0e
s0t = Ax0e

s0t + Bu0e
s0t 

� 
s0I − A −B 

� x0 = 0 ⇒ 
u0 

• Also have that y = Cx + Du = 0 which gives: 

Cx0e
s0t + Du0e

s0t = 0 
� 
C D 

� x0 = 0 → 
u0 

• So we must find the s0 that solves: � � � � 
s0I − A −B x0 = 0 

C D u0 

• Is a generalized eigenvalue problem that can be solved in 
MATLAB using eig.m or tzero.m 1 

1MATLAB is a trademark of the Mathworks Inc. 
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•	 There is a zero at the frequency s0 if there exists a non-trivial solution 
of � � 

s0I − A −B 
det	 = 0 

C D 

• Compare with equation on page 6–?? 

x0 •	 Key Point: Zeros have both direction 
u0 

and frequency s0 

• Just as we would associate a direction (eigenvector) with each pole 
(frequency λi) 

s+2 •	 Example: G(s) = 
s2+7s+12 

−7 −12	 1 � � 
A =	 B = C = 1 2 D = 0 

1 0	 0 

⎡	 ⎤ � � s0 + 7 12 −1

det 

s0I − A −B 
= det ⎣ −1 s0 0 ⎦


C D 
1 2 0 

= (s0 + 7)(0) + 1(2) + 1(s0) = s0 + 2 = 0 

so there is clearly a zero at s0 = −2, as we expected. For the 
directions, solve: ⎡	 ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤ 

s0 + 7 12 −1 x01 5 12 −1 x01 ⎣ −1 s0 0 ⎦ ⎣ x02 ⎦ = ⎣ −1 −2 0 ⎦⎣ x02 ⎦ = 0? 
1 2 0	 u0 1 2 0 u0 s0=−2 

gives x01 = −2x02 and u0 = 2x02 so that with x02 = 1 

x0	= 
−2 

and u = 2e−2t 

1 
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•	 Further observations: apply the specified control input in the fre­
quency domain, so that 

Y1(s) = G(s)U(s) 

where u = 2e−2t, so that U(s) = 2 
s+2 

s + 2 2	 2 
Y1(s) =	 = 

s2 + 7s + 12 
· 
s + 2 s2 + 7s + 12 

Say that s = −2 is a blocking zero or a transmission zero. 

•	 The response Y1(s) is clearly non-zero, but it does not contain a 
component at the input frequency s = −2. 

• That input has been “blocked”. 

•	 Note that the output response left in Y1(s) is of a very special form – 
it corresponds to the (negative of the) response you would see from � �T 
the system with u(t) = 0 and x0 = −2 1 

Y2(s) =	 C(sI − A�)−1 x0 �−1 � � � � s + 7 12 −2 
= 1 −2 −1 s 1 �	 � � � � � s −12 −2 1 
= 1 −2

1 s + 7 1 s2 + 7s + 12 
−2 

= 
s2 + 7s + 12 

•	 So then the total output is Y (s) = Y1(s)+Y2(s) showing that Y (s) = 
0 y(t) = 0, as expected. → 
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Simpler Test


•	 Simpler test using transfer function matrix: 

• If z is a zero with (right) direction [ζT , ũT ]T , then �	 � � � 
zI − A − B ζ 

= 0 
C D ũ

• If z not an eigenvalue of A, then ζ = (zI − A)−1Bũ, which gives 

C(zI − A)−1B + D ũ = G(z)ũ = 0 

• Which implies that G(s) loses rank at s = z 

• If G(s) is square, can find the zero frequencies by solving: 

det G(s) = 0 

• If any of the resulting roots are also eigenvalues of A, need to 
re-check the generalized eigenvalue matrix condition. 

•	 Need to be very careful when we find MIMO zeros that have the same 
frequency as the poles of the system, because it is not obvious that 
a pole/zero cancelation will occur (for MIMO systems). 

• The zeros have a directionality associated with them, and that 
must “agree” as well, or else you do not get cancelation 

• More on this topic later when we talk about controllability and 
observability 

October 17, 2010 
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Transfer Function Matrix 

•	 Note that the transfer function matrix (TFM) notion is a MIMO 
generalization of the SISO transfer function 

It is a matrix of transfer functions • ⎤⎡ 

G(s) =
⎣

g11(s) g1m(s)· · · 

. . . ⎦


gp1(s) gpm(s)· · · 

• gij(s) relates input of actuator j to output of sensor i. 

• It is relatively easy to go from a state-space model to a TFM, but 
not obvious how to go back the other way. 

•	 Simplest approach is to develop a state space model for each element 
of gij(s) in the form Aij, Bij, Cij, Dij, and then assemble (if TFM is 
p × m) 

⎤⎡⎤⎡ 
A11	 B11


A	=


⎢⎢⎢⎢⎢⎢⎢⎣


. . .

A1m


A21

.
.. 

⎥⎥⎥⎥⎥⎥⎥⎦


B =


⎢⎢⎢⎢⎢⎢⎢⎣

B21


⎥⎥⎥⎥⎥⎥⎥⎦


. . .


.


B1m


.. 
Apm	 Bpm
⎤⎡ ⎢⎢⎢⎣


C11 C1m· · · 
C21 

. . . C2m 
⎥⎥⎥⎦


C
=
 D = [Dij]
... 
Cp1 · · · Cpm 
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•	 One issue is how many poles are needed - this realization might be 
inefficient (larger than necessary). 

• Related to McMillan degree, which for a proper system is the 
degree of the characteristic polynomial obtained as the least com­
mon denominator of all minors of G(s). 2 

• Subtle point: consider a m × m matrix A, then the standard 
minors formed by deleting 1 row and column and taking the de­
terminant of the resulting matrix are called the m − 1th order 
minors of A. 

• To consider all minors of A, must consider all possible orders, i.e. 
by selecting j ≤ m subsets of the rows and columns and taking 
the resulting determinant. 

•	 Given an n × m matrix A with entries aij, a minor of A is the 
determinant of a smaller matrix formed from its entries by selecting 
only some of the rows and columns. 

• Let K = { k1 k2 . . . kp } and L = { l1 l2 . . . lp } be subsets 
of {1, 2, . . . , n} and {1, 2, . . . ,m}, respectively. 

• Indices are chosen so k1 < k2 · · · < kp and l1 < l2 · · · < lp. 

• pth order minor defined by K and L is the determinant 3 

[A]K,L =


ak1l1 ak1l2 . . . ak1lp 

ak2l1 ak2l2 . . . ak2lp 
... . . . 

akpl1 akpl2 . . . akplp 

• If p = m = n then the minor is simply the determinant of the 
matrix. 

•	 In a nutshell what this means is that a 2 × 2 matrix has 4 order-1 
minors and 1 order-2 minor to consider. 

2Lowest order polynomial that can be divided cleanly by all denominators of the minors of G(s). 

3See here for details 

October 17, 2010 
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Gilbert’s Realization 

•	 One approach: rewrite the TFM as 

H(s)
G(s) = 

d(s) 

where d(s) is the least common multiple of the denominators of the 
entries of G(s). 

• Note difference from the discussion about the McMillan degree. 

• d(s) looks like a characteristic equation for this system, but it is 
not it does not accurately reflect number of poles needed. ⇒ 

•	 For proper systems for which d(s) has distinct roots, can use Gilbert’s 
realization. 

• Apply a partial fraction expansion to each of the elements of TFM 
G(s) and collect residues for each distinct pole4 . 

Nm� Ri
G(s) = where Ri = lim (s − pi)G(s) 

i
s − pi s→pi 

• Then sum of the ranks of matrices Ri gives the McMillan degree 

4Generalizations of this Gilbert’s realization approach exist if the gij have repeated roots. 

October 17, 2010 
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•	 Can develop a state space realization by analyzing each element of 
the partial fraction expansion 

• Set Ri = CiBi, and find appropriate Bi and Ci 

• Form Ai by placing the poles on the diagonal as many times as 
needed (determined by rank of Ri) 

• Form state space model: ⎡	 ⎤ ⎡ ⎤ 
A1	 B1 

.ẋ = ⎣ . . . ⎦ x + ⎣ .. ⎦ u 
ANm BNm 

y	 = C1 CNm x· · · 

October 17, 2010 
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Zero Example 1 ⎤⎡ 

• TFM G(s) =


⎢⎢⎢⎢⎣


1 1

s + 2 s + 2


1 s − 2 
s − 2 (s + 1)(s + 2) 

⎥⎥⎥⎥⎦


• To compute the McMillan degree for this system, form all minors (4 
order-1 and 1 order-2): 

1 1 1 s − 2 2 − 7s 
s + 2

,
s + 2

,
s − 2

, 
(s + 1)(s + 2)

, 
(s − 2)(s + 1)(s + 2)2 

•	 To find LCD (least common multiple of denominators), pull out small­
est polynomial that leaves all terms with no denominator: 

1 
(s − 2)(s + 1)(s + 2)2 

{(s − 2)(s + 1)(s + 2), (s − 2)(s + 1)(s + 2), 

(s + 1)(s + 22), (s − 2)2(s + 2), 2 − 7s 

• So we expect a fourth order system with poles at s = 2, s = −2 
(two), and s = −1 

•	 Compare with the Gilbert realization, find d(s): ⎤⎡ 
(s + 1)(s − 2) (s + 1)(s − 2)


1 
G(s) = 

(s + 1)(s + 2)(s − 2) 
⎢⎣


⎥⎦

2( + 1)( + 2) ( 2)−s s s � 

1 0 0 1 0 0 1 1 1 
=	 + + 

s + 1 0 −3 s − 2 1 0 (s + 2) 0 4 

• Note that the rank of the last 2×2 matrix is 2 

• So the system order is 4 - we need to have two poles s = −2. 

October 17, 2010 
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So the system model for the example is • � � 0 
A1 = [−1] B1 = 0 −3 C1 = 

1 
−2 0 1 1 

A2 = B2 = C2 = I2 
0 0 4−2 � � � � 0 

A3 = [2] B3 = 1 0 C3 = 
1 

Note, realization model on 8–5 would be 5th order, not 4th. • 

Code: MIMO Models 

1 %

2 % basic MIMO TFM to SS

3 %

4 G=tf({1 1;1 [1 −2]},{[1 2] [1 2];[1 −2] [1 3 2]});

5


6 % find residue matrices of the 3 poles

7 R1=tf([1 1],1)*G;R1=minreal(R1);R1=evalfr(R1,−1)

8 R2=tf([1 2],1)*G;R2=minreal(R2);R2=evalfr(R2,−2)

9 R3=tf([1 −2],1)*G;R3=minreal(R3);R3=evalfr(R3,2)


10 

11 % form SS model for 3 poles using the residue matrices 
12 A1=[−1];B1=R1(2,:);C1=[0 1]'; 
13 A2=[−2 0;0 −2];B2=R2;C2=eye(2); 
14 A3=[2];B3=R3(2,:);C3=[0 1]'; 
15 

16 % combine submodels 
17 A=zeros(4);A(1:1,1:1)=A1;A(2:3,2:3)=A2;A(4,4)=A3; 
18 B=[B1;B2;B3]; 
19 C=[C1 C2 C3]; 
20 

21 syms s 
22 Gn=simple(C*inv(s*eye(4)−A)*B); 
23 

24 % alternative is to make a SS model of each g {ij}
25 A11=−2;B11=1;C11=1; 
26 A12=−2;B12=1;C12=1; 
27 A21=2;B21=1;C21=1; 
28 A22=[−3 −2;1 0];B22=[2 0]';C22=[0.5 −1]; 
29 

30 % and then combine 
31 AA=zeros(5);AA(1,1)=A11;AA(2,2)=A12;AA(3,3)=A21;AA(4:5,4:5)=A22; 
32 BB=[B11 B11*0;B12*0 B12;B21 B21*0;B22*0 B22]; 
33 CC=[C11 C12 zeros(1,3);zeros(1,2) C21 C22]; 
34 GGn=simple(CC*inv(s*eye(5)−AA)*BB); 
35 

36 Gn,GGn 

October 17, 2010 
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Zero Example 2 ⎤⎡ 

• TFM G(s) =


⎢⎢⎢⎢⎣


1 1

s + 1 (s + 1)2


1 1

(s + 1)3 (s + 1)4


⎥⎥⎥⎥⎦


•	 McMillan Degree: find all minors of G(s) 

1 1 1 1 
,	 , , , 0 

s + 1 (s + 1)2 (s + 1)3 (s + 1)4 

•	 To find LCD (least common multiple of denominators), pull out small­
est polynomial that leaves all terms with no denominator: 

1

(s + 1)3 , (s + 1)2 , (s + 1), 1


(s + 1)4


•	 So the LCD is (s +1)4 and the McMillan degree is 4 – we expect the 
minimal state space model to have 4 poles at s = −1. 

•	 Gilbert approach as given cannot be applied directly since d(s) = 
1 

(s+1)4 has repeated roots 

• See Matlab code for model development 

⎤⎡⎤⎡ 
−1.00 0.00 0.00	 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.00 

1.00 0.00 

A = 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

B = 

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ 

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ 

−3.00 −1.50 −0.50	 0.00 0.00 0.00 0.00 0.00 0.00 
2.00 0.00 0.00 

0.50 0.00 
0.00 0.00 
0.00 0.00 
0.00 1.00 
0.00 0.00 
0.00 0.50 
0.00 0.00 
0.00 0.00 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 −2.00 −1.00 0.00 0.00 0.00 0.00 

1.00 0.000.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 −4.00 −1.50 −1.00 −0.50 

4.00 0.00 0.00 0.000.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 

1.00 0.00 0.00 0.00	 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 
C =	 D = 

0.00 0.00 0.00 1.00	 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 

•	 Note that λi(A) = −1 – there are 10 poles there. So this is clearly 
not minimal since the order is 10, not the 4 we expected. 

October 17, 2010 
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Matlab command minreal can be used to convert to a minimal• 
realization. � � � � −0.40 −0.16 −1.00 0.01 0.23 −0.02 

A = 0.32 
0.50 

−1.49 
−1.06 

−0.06 
−1.17 

1.07 
−0.39 B = −0.97 

−0.05 
0.36 

−0.31 
−0.07 0.16 0.02 −0.94 0.01 −0.75 

� � � � 

C = 
0.18 

−1.11 
−1.01 
−0.29 

0.35 
0.43 

−0.63 
−0.28 

D = 
0.00 
0.00 

0.00 
0.00 

• New model has 6 states removed - so the minimal degree is 4 as 
expected. 

Code: Zeros (zero example1.m) 

1 G1=ss(tf({1 1;1 1},{[1 1] conv([1 1],[1 1]);conv([1 1],conv([1 1],[1 1])) ...

2 conv([1 1],conv([1 1],conv([1 1],[1 1])))})); %

3 [a,b,c,d]=ssdata(G1);

4 latex(a,'%.2f','nomath') %

5 latex(b,'%.2f','nomath') %

6 latex(c,'%.2f','nomath') %

7 latex(d,'%.2f','nomath') %

8 G2=minreal(G1);[a2,b2,c2,d2]=ssdata(G2);

9 latex(a2,'%.2f','nomath') %


10 latex(b2,'%.2f','nomath') %

11 latex(c2,'%.2f','nomath') %

12 latex(d2,'%.2f','nomath') %


October 17, 2010 
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Zero Example 3 ⎤⎡ 

• TFM G(s) =


⎢⎢⎢⎢⎣


2s + 3 3s + 5

s2 + 3s + 2 s2 + 3s + 2


−1	
0 

(s + 1) 

⎥⎥⎥⎥⎦


•	 McMillan Degree: find all minors of G(s) 

2s + 3 
, 

3s + 5 
, 

−1 
, 

−(3s + 5) 
s2 + 3s + 2 s2 + 3s + 2 (s + 1) (s + 1)(s2 + 3s + 2) 

•	 To find LCD, pull out smallest polynomial that leaves all terms with 
no denominator: 

1 
(2s + 3)(s + 1), (3s + 5)(s + 1), −(s 2 + 3s + 2), −(3s + 5) 

(s2 + 3s + 2)(s + 1) 

• So the LCD is (s2 + 3s + 2)(s + 1) = (s + 1)2(s + 2) 

• The McMillan degree is 3 – we expect the minimal state space 
model to have 3 poles. 

•	 For Gilbert approach, we rewrite 

2s + 3 3s + 5 

G(s) = 
−(s + 2) 0 

(s + 1)(s + 2) 
= 

R1 

s + 1 
+ 

R2 

s + 2 

where 
2s+3 3s+5
 1 2


R1 = lim (s + 1)G(s) = lim s+2 s+2 =
−1 0
 −1 

1 1 

0
s→−1
 s→−1


2s+3 3s+5

s+1 s+1R2 = lim (s + 2)G(s) = lim s+2 = 

s→−2 s→−2 −s+1 0 0 0 

which also indicates that we will have a third order system with 2 
poles at s = −1 and 1 at s = −2. 

October 17, 2010 
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For the state space model, note that • � �� � 
1 2 1 0 

R1 =	 = C1B1 −1 0 0 1 

1 � � 
R2 = 1 1 = C2B20 

giving ⎡ ⎤	 ⎡ ⎤ 
−1 0 0 1 0 

0 ⎦ B = ⎣ 0 1 ⎦A = ⎣	 0 −1 
0 0 −2	 1 1 

1 2 1 
C = −1 0 0 

• From Matlab you get: ⎡ ⎤ ⎡ ⎤ 
−1.00 0.00 0.00 0.56 1.12 

A = ⎣ 0.00 −2.00 0.00 ⎦ B = ⎣ 0.35 0.35 ⎦ 

0.00 0.00 −1.00 0.50 0.00 � � � � 
1.79 2.83 0.00 0.00 0.00 

C = D = 
0.00 0.00 −2.00 0.00 0.00 

Code: Zeros (zero example2.m)


1 G1=ss(tf({[2 3] [3 5];−1 0},{[1 3 2] [1 3 2];[1 1] 1})); % 
2 G1=canon(G1,'modal') 
3 [a,b,c,d]=ssdata(G1); 
4 latex(a,'%.2f','nomath') % 
5 latex(b,'%.2f','nomath') % 
6 latex(c,'%.2f','nomath') % 
7 latex(d,'%.2f','nomath') % 

October 17, 2010 
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Summary of Zeros and TFMs


•	 Great feature of solving for zeros using the generalized eigenvalue 
matrix condition is that it can be used to find MIMO zeros of a 
system with multiple inputs/outputs. 

s0I − A − B 
det	 = 0 

C D 

•	 Note: we have to be careful how to analyze these TFM’s. 

• Just looking at individual transfer functions is not useful. 

• Need to look at system as a whole – use the singular values of 
G(s) 

• Will see later the conditions to determine if the order of a state space 
model is minimal. 

October 17, 2010 
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