Topic #38

16.30/31 Feedback Control Systems

State-Space Systems
e System Zeros

e Transfer Function Matrices for MIMO systems
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Zeros in State Space Models

e Roots of transfer function numerator called the system zeros.

e Need to develop a similar way of defining/computing them using
a state space model.

e Zero: generalized frequency sy for which the system can have a
non-zero input u(t) = uge®’, but exactly zero output y(t) = 0 V¢

e Note that there is a specific initial condition associated with this
response Xy, so the state response is of the form x(t) = xye®’

t t

u(t) =uee™ = x(t) =% =y(t)=0

e Given x = Ax + Bu, substitute the above to get:

X()S()esot = AX()@SOt + BuOGSOt = [ sol — A —B ] [ EO ] =0
0

e Also have that y = Cx + Du = 0 which gives:

CXOGSOt—|—D110€$0t:O — [C D] [XO] =0
Ug

e So we must find the s that solves:

So] — A —B X0 — 0
C D U N
e Is a generalized eigenvalue problem that can be solved in

MATLAB using eig.m or tzero.m !

IMATLAB is a trademark of the Mathworks Inc.
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e There is a zero at the frequency s if there exists a non-trivial solution
of
SOI — A —B
det =0

e Compare with equation on page 677

0 ] and frequency s

e Key Point: Zeros have both direction [u
0

e Just as we would associate a direction (eigenvector) with each pole

(frequency \;)

e Example: G(s) = =2

2475412
—7 —12 1
A= B = C=[12] D=0
1 0 0
sl —A —B so+7 12 —1
det C D = det —1 s O
1 2 0
= (so+7)(0)+ 1(2) + 1(sg) =s9+2=0
so there is clearly a zero at sy = —2, as we expected. For the
directions, solve:
S0 + 712 —1 o1 5 12 —1 o1
—1 S0 0 WD) = —1 =2 0 T2 =07
1 2 0 s9=—2 U 1 2 0 U
gives xg1 = —2xg9 and ug = 2x(9 so that with zgps = 1

—2
onl 1] and u = 2¢ %
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e Further observations: apply the specified control input in the fre-

quency domain, so that

Yi(s) = G(s)U(s)
where u = 2¢7, so that U(s) = 5%2
S+ 2 2 2
Y —_— . —_—
1(s) SP+Ts+12 s+2 24+ Ts+12
Say that s = —2 is a blocking zero or a transmission zero.
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The response Yi(s) is clearly non-zero, but it does not contain a

component at the input frequency s = —2.

e That input has been “blocked” .

e Note that the output response left in Y;(s) is of a very special form —

it corresponds to the (negative of the) response you would see from
the system with u(t) =0 and xg = [ =2 1 ]T

Ya(s)

C(S[ — A)_1X()

o] 's_+17 132]1[_12]

|1 -2

s —12 —2 1
|1 s+7 1 | s2+7s+12
—2

2475+ 12

e So then the total output is Y (s) = Yi(s)+Y3(s) showing that Y (s) =
0 — y(t) =0, as expected.

October 17, 2010



Fall 2010 16.30/31 8-4

Simpler Test

e Simpler test using transfer function matrix:

o If 2 is a zero with (right) direction [¢?, @! ], then

[t R)[E)

e If 2 not an eigenvalue of A, then ¢ = (21 — A)~!Ba, which gives
[C(zI —A)'B+D]a=G(z)a=0
e Which implies that G(s) loses rank at s = 2

e If G(s) is square, can find the zero frequencies by solving:
det G(s) =0

e If any of the resulting roots are also eigenvalues of A, need to
re-check the generalized eigenvalue matrix condition.

e Need to be very careful when we find MIMO zeros that have the same
frequency as the poles of the system, because it is not obvious that
a pole/zero cancelation will occur (for MIMO systems).

e The zeros have a directionality associated with them, and that
must “agree” as well, or else you do not get cancelation

e More on this topic later when we talk about controllability and
observability

October 17, 2010
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Transfer Function Matrix

e Note that the transfer function matrix (TFM) notion is a MIMO
generalization of the SISO transfer function

e It is a matrix of transfer functions

gui(s) -+ gim(s)
G(s) = g

gp1(s) <+ Gpm(s)
® g;j(s) relates input of actuator j to output of sensor i.

e It is relatively easy to go from a state-space model to a TFM, but
not obvious how to go back the other way.

e Simplest approach is to develop a state space model for each element
of g;;(s) in the form A;;, B;;, Cy;, D;j, and then assemble (if TFM is
p X m)

Ay B
Alm Blm
A= B =
Ao Bo;
Apm By,
[ Cy - O |
O Co . Copy D =[Dy
I Cpi--o Com |

October 17, 2010
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e One issue is how many poles are needed - this realization might be
inefficient (larger than necessary).

e Related to McMillan degree, which for a proper system is the
degree of the characteristic polynomial obtained as the least com-
mon denominator of all minors of G(s).”

e Subtle point: consider a m x m matrix A, then the standard
minors formed by deleting 1 row and column and taking the de-

1th

terminant of the resulting matrix are called the m — order

minors of A.

e To consider all minors of A, must consider all possible orders, i.e.
by selecting 7 < m subsets of the rows and columns and taking
the resulting determinant.

e Given an n X m matrix A with entries a;;, a minor of A is the
determinant of a smaller matrix formed from its entries by selecting
only some of the rows and columns.

olet K={k ko ... ky}and L={1; Iy ... [, } be subsets
of {1,2,...,n} and {1,2,...,m}, respectively.

e Indices are chosen so k; < ky--- < k,and [} <ly--- <,

e pth order minor defined by K and L is the determinant °

Afql; Akqly - - - akllp
ath akle ce a;@l
Al =] "7 7 g
akpgl akplz Ce akplp

e If p = m = n then the minor is simply the determinant of the
matrix.

e |n a nutshell what this means is that a 2 X 2 matrix has 4 order-1
minors and 1 order-2 minor to consider.

2Lowest order polynomial that can be divided cleanly by all denominators of the minors of G(s).

3See here for details

October 17, 2010
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Gilbert's Realization

e One approach: rewrite the TFM as

H(s)

d(s)

where d(s) is the least common multiple of the denominators of the
entries of G(s).

G(s) =

e Note difference from the discussion about the McMillan degree.

e d(s) looks like a characteristic equation for this system, but it is
not = it does not accurately reflect number of poles needed.

e For proper systems for which d(s) has distinct roots, can use Gilbert's
realization.

e Apply a partial fraction expansion to each of the elements of TFM
G(s) and collect residues for each distinct pole®.
N,

G(s) = Z By where R; = lim (s — p;)G(s)

S5 — D S=D;

i

e Then sum of the ranks of matrices R; gives the McMillan degree

4Qeneralizations of this Gilbert’s realization approach exist if the gi; have repeated roots.

October 17, 2010
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e Can develop a state space realization by analyzing each element of
the partial fraction expansion

e Set R; = C;B;, and find appropriate B; and C;

e Form A; by placing the poles on the diagonal as many times as
needed (determined by rank of R;)

e Form state space model:

Al Bl

October 17, 2010
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Zero Example 1

1 1
s+ 2 s+ 2
o TFM G(s) =
1 s —2
| s—2 (s+1)(s+2) |

e To compute the McMillan degree for this system, form all minors (4
order-1 and 1 order-2):

1 1 1 s —2 2—1Ts
{s+2’ s+2 s—2" (s+1)(s+2) (8—2)(8+1)(S+2)2}

e To find LCD (least common multiple of denominators), pull out small-
est polynomial that leaves all terms with no denominator:

1
(s —=2)(s+1)(s+2)
(s+1)(s+2%, (s—2)7%s+2), 2-7Ts}

5 {(s =2)(s+1)(s+2),(s—=2)(s+ 1)(s +2),

e So we expect a fourth order system with poles at s = 2, s = —2
(two), and s = —1

e Compare with the Gilbert realization, find d(s):

1 [ (s+1)(s—2) (s+1)(s—2)]

(s+1)(s+2)(s—2)

G(s) =

| (s+1)(s+2) (s —2)

_ L ooy, t oo}, 1 11
s+ 110 =3] s—2[10] (s+2)[04

e Note that the rank of the last 2x2 matrix is 2

e So the system order is 4 - we need to have two poles s = —2.

October 17, 2010
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e So the system model for the example is

Ay =[-1] Bi=[0-3] C=

PR P R
o2 T o T

Az = [2] Bi=[10] (5=

e Note, realization model on 8-5 would be 5th order, not 4th.

Code: MIMO Models

o

o\°

basic MIMO TFM to SS

G=tf({1 1;1 [1 —21},{[1 2] [1 21;[1 —21 [1 3 21});
% find residue matrices of the 3 poles

R1=tf([1 1],1)*G;Rl=minreal (R1);Rl=evalfr(R1l,—1)
R2=tf([1 2],1)*G;R2=minreal (R2);R2=evalfr (R2,—2)
R3=tf([1 —2],1)*G;R3=minreal (R3);R3=evalfr (R3,2)

© 0 N O G oA W N

11 % form SS model for 3 poles using the residue matrices
12 Al=[—1];B1=R1(2,:);Cl=[0 1]1"';

13 A2=[—2 0;0 —2];B2=R2;C2=eye(2);

14 A3=[2];B3=R3(2,:);C3=[0 11';

% combine submodels

A=zeros(4);A(1:1,1:1)=A1;A(2:3,2:3)=A2;A(4,4)=A3;
18 B=[B1l;B2;B3];

C=[Cl C2 C3];

21 sSyms S

22 Gn=simple (Cxinv (sxeye (4)—A) *B) ;

24 % alternative is to make a SS model of each g_{ij}
25 All=—2;Bl1=1;Cll=1;

26 Al2=—2;B1l2=1;Cl2=1;

27 A21=2;B21=1;C21=1;

28 A22=[—3 —2;1 0]1;B22=[2 0]';C22=[0.5 —1];

30 % and then combine

31 AA=zeros (5);AA(1,1)=A11;AA(2,2)=A12;AA(3,3)=RA21;AA(4:5,4:5)=022;
32 BB=[B1l1l B11x0;B12x0 B12;B21 B21%0;B22x0 B22];

33 CC=[Cll Cl2 zeros(l,3);zeros(l,2) C21 C22];

34 GGn=simple (CCxinv (s*xeye (5) —AA) *BB) ;

35

36 Gn,GGn

October 17, 2010
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Zero Example 2

1 1
s+1 (s+1)2
o TFM G(s) =
1 1
(s 1P (st 1) |

e McMillan Degree: find all minors of G(s)

1 1 1 1

0
s+17 (s+1)? (s+1)3 (s+1)¥

e To find LCD (least common multiple of denominators), pull out small-
est polynomial that leaves all terms with no denominator:

1

S 1)° 1)° 1), 1

Emy R I CR R

e Sothe LCD is (s+1)* and the McMillan degree is 4 — we expect the
minimal state space model to have 4 poles at s = —1.

e Gilbert approach as given cannot be applied directly since d(s) =

ﬁ has repeated roots

e See Matlab code for model development

[ —1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 T [ 1.00 0.00 7
0.00 —-3.00 -1.50 —0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00
0.00 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
A— 0.00 0.00 0.00 0.00 —2.00 -—1.00 0.00 0.00 0.00 0.00 B 0.00 1.00
0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 —4.00 -1.50 -1.00 —-0.50 0.00 0.50
0.00 0.00 0.00 0.00 0.00 0.00 4.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 | | 0.00 0.00 |

C = 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 D= 0.00 0.00
| 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 1.00 | 0.00 0.00

e Note that \;(A) = —1 — there are 10 poles there. So this is clearly
not minimal since the order is 10, not the 4 we expected.

October 17, 2010
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e Matlab command minreal can be used to convert to a minimal

realization.
—0.40 —-0.16 -1.00 0.01 0.23 —-0.02
A — 0.32 —149 —0.06 1.07 B — | 0o o3
- 0.50 —-1.06 -1.17 -0.39 - —0.05 -0.31
—0.07 0.16 0.02 —-0.94 0.01 -0.75

= 0.18 -1.01 035 -0.63 D= 0.00 0.00
| —-1.11 =029 0.43 -0.28 ~ | 0.00 0.00

e New model has 6 states removed - so the minimal degree is 4 as
expected.

Code: Zeros (zero examplel.m)

1 Gl=ss(tf({l 1;1 1},{[1 1] conv ([l 1],[1 1]);conv ([l 1],conv ([l 1],[1 11))
2 conv ([l 1],conv ([l 1],conv ([l 1],([1 11)))}H); ¢
3 [a,b,c,d]=ssdata(Gl);
4 latex(a,'%.2f', 'nomath') %
5 latex(b,'%$.2f', 'nomath'") %
6 latex(c,'%.2f','nomath') %
7 latex(d,'%.2f', 'nomath') %
8 G2=minreal (Gl); [a2,b2,c2,d2]=ssdata (G2);
9 latex(a2,'%.2f', 'nomath') %
10 latex(b2,'%.2f', 'nomath') %
11 latex(c2,'%.2f', 'nomath') %
( )

12 latex(d2,'%.2f', 'nomath'

October 17, 2010
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Zero Example 3

25 + 3 35+ 5
s?+3s+2 s+ 3s+2
TFM G(s) =
1 )
L (s+1) |
McMillan Degree: find all minors of G(s)
25+ 3 35 +5 —1 —(3s5+5)

$2+3s+2 $2+3s+2 (s+1) (s+1)(s>+3s+2)

To find LCD, pull out smallest polynomial that leaves all terms with
no denominator:

1
(s24+3s+2)(s+1)

e Sothe LCD is (s* +3s+2)(s+ 1) = (s + 1)*(s +2)

{@2s+3)(s+1), (3s+5)(s+1), —(s>+3s+2), —(3s+5)}

e The McMillan degree is 3 — we expect the minimal state space
model to have 3 poles.

For Gilbert approach, we rewrite

25 + 3 33+5]
R

G(s) = —(s+2) 0 _ N Ry
(s+1)(s+2) s+1 s+2
where
[ 2s+3 3s+5 1 2
Rl B 31—1>I£11(S + 1)G(S) B sl—i>r£11 i_i 862 ] - —1 0 ]
[ 25+3  3s+5 1 1

which also indicates that we will have a third order system with 2
polesat s = —1and 1 at s = —2.
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e For the state space model, note that

R_'12 U
S I RV O NV T
Ry = B [1 1] =08,
| 0
giving
(—1 00 10
A=10 —-1]0 B=|01
0 0 |-2 11
1 2|1
C‘_100]

e From Matlab you get:

[ —1.00 0.00 0.00 0.56 1.12
A = 0.00 —=2.00  0.00 B =10.35 0.35

| 0.00 0.00 —1.00 0.50 0.00
C [ 1.79 2.83 0.00] D [0.00 0.00]

| 0.00 0.00 —2.00 0.00 0.00

Code: Zeros (zero example2.m)

1 Gl=ss(tf({[2 3] [3 5];—1 0},{[1 3 2] [1 3 2];[1 1] 1})); %
2 Gl=canon (Gl, 'modal')
3 [a,b,c,d]=ssdata(Gl);

4 latex(a,'%.2f', 'nomath') %
5 latex(b,'%.2f', 'nomath') %
6 latex(c,'%.2f','nomath') %
7 latex(d,'%.2f', 'nomath') %

October 17, 2010
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Summary of Zeros and TFMs

e Great feature of solving for zeros using the generalized eigenvalue
matrix condition is that it can be used to find MIMO zeros of a
system with multiple inputs/outputs.

80]—14 —B]:O

det [ C D

e Note: we have to be careful how to analyze these TFM'’s.

e Just looking at individual transfer functions is not useful.

e Need to look at system as a whole — use the singular values of

G(s)

e Will see later the conditions to determine if the order of a state space
model is minimal.

October 17, 2010
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