
Topic #6


16.30/31 Feedback Control Systems


State-Space Systems 

•	 What are state-space models? 

•	 Why should we use them? 

•	 How are they related to the transfer functions 
used in classical control design and how do we 
develop a state-space model? 

•	 What are the basic properties of a state-space model, and 
how do we analyze these? 
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TF’s to State-Space Models


•	 The goal is to develop a state-space model given a transfer function 
for a system G(s). 

• There are many, many ways to do this. 

•	 But there are three primary cases to consider: 

1. Simple numerator (strictly proper) 

y	 1 
=	G(s) = 

u	 s3 + a1s2 + a2s + a3 

2. Numerator order less than denominator order (strictly proper) 

y b1s
2 + b2s + b3 N(s) 

u 
= G(s) = 

s3 + a1s2 + a2s + a3 
= 

D(s) 

3. Numerator equal to denominator order (proper) 

y	 b0s
3 + b1s2 + b2s + b3 

=	G(s) = 
u	 s3 + a1s2 + a2s + a3 

These 3 cover all cases of interest • 
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•	 Consider case 1 (specific example of third order, but the extension 
to nth follows easily) 

y	 1 
=	G(s) = 

u	 s3 + a1s2 + a2s + a3 

can be rewritten as the differential equation 
... 
y + a1ÿ + a2ẏ + a3y = u 

choose the output y and its derivatives as the state vector ⎡ ⎤ 
ÿ

x = ⎣ ẏ ⎦ 

y 

then the state equations are 

⎡ ... ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ 

ẋ = ⎣ 
y 

ÿ ⎦ = ⎣ 
−a1 

1 
−a2 

0 
−a3 

0 ⎦ ⎣ 
ÿ 
ẏ ⎦ + ⎣ 

1 
0 ⎦ u 

ẏ 0 1 0 y 0 ⎡ ⎤ � � ÿ

y = 0 0 1 ⎣ ẏ ⎦ + [0]u 
y 

•	 This is typically called the controller form for reasons that will become 
obvious later on. 

• There are four classic (called canonical) forms – observer, con­
troller, controllability, and observability. They are all useful in 
their own way. 
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• Consider case 2 

y 
u 
= G(s) = 

b1s
2 + b2s + b3 

s3 + a1s2 + a2s + a3 
= 

N(s) 
D(s) 

Let•	
y y v 
= 

u v 
· 
u 

where y/v = N(s) and v/u = 1/D(s) 

• Then representation of v/u = 1/D(s) is the same as case 1 
... 
v + a1v̈ + a2v̇ + a3v = u 

use the state vector	 ⎡ ⎤ 
v̈

x = ⎣ v̇ ⎦ 

v 
to get 

ẋ = A2x + B2u 

where ⎡	 ⎤ ⎡ ⎤ 
−a1 −a2 −a3	 1 

A2 = ⎣	 1 0 0 ⎦ and B2 = ⎣ 0 ⎦ 

0 1 0 0 

• Then consider y/v = N(s), which implies that 

y = b1v̈ + b2v̇ + b3v⎡ ⎤ 
v̈

= b1 b2 b3 ⎣ v̇ ⎦ 

v 
= C2x + [0]u 
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Consider case 3 with• 

y	 b0s
3 + b1s2 + b2s + b3 

=	G(s) = 
u	 s3 + a1s2 + a2s + a3 

β1s
2 + β2s + β3 

= + D 
s3 + a1s2 + a2s + a3 

= G1(s) + D 

where 

D( s3 +a1s
2 +a2s +a3 ) 

+( +β1s
2 +β2s +β3 ) 

= b0s3 +b1s
2 +b2s +b3 

so that, given the bi, we can easily find the βi 

D = b0 

β1 = b1 − Da1 
... 

•	 Given the βi, can find G1(s) 

• Can make state-space model for G1(s) as in case 2 

•	 Then we just add the “feed-through” term Du to the output equation 
from the model for G1(s) 

•	 Will see that there is a lot of freedom in making a state-space model 
because we are free to pick the x as we want 

September 21, 2010 



Fall 2010	 16.30/31 6–6


Modal Form


•	 One particular useful canonical form is called the Modal Form 

• It is a diagonal representation of the state-space model. 

•	 Assume for now that the transfer function has distinct real poles pi 
(easily extends to case with complex poles, see 7–??) 

N(s)	 N(s)
G(s) = = 

D(s) (s − p1)(s − p2) (s − pn)· · · 
r1 r2	 rn 

= + + +· · · 
s − p1 s − p2 s − pn 

•	 Now define collection of first order systems, each with state xi 
X1 r1 

U(s)
= 

s − p1 
⇒ ẋ1 = p1x1 + r1u 

X2 r2 

U(s)
= 

s − p2 
⇒ ẋ2 = p2x2 + r2u 

... 
Xn rn 

U(s)
= 

s − pn 
⇒ ẋn = pnxn + rnu 

Which can be written as • 

ẋ(t) = Ax(t) + Bu(t) 

y(t) = Cx(t) + Du(t) 

with ⎡	 ⎤ ⎡ ⎤ ⎡ ⎤T 
p1	 r1 1 

.	 .A = ⎣ . . . ⎦ B = ⎣ .. ⎦ C = ⎣ .. ⎦ 

1pn	 rn 

•	 Good representation to use for numerical robustness reasons. 

• Avoids some of the large coefficients in the other 4 canonical forms. 
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State-Space Models to TF’s


•	 Given the Linear Time-Invariant (LTI) state dynamics 

ẋ(t) = Ax(t) + Bu(t) 

y(t) = Cx(t) + Du(t) 

what is the corresponding transfer function? 

•	 Start by taking the Laplace Transform of these equations 

L{ẋ(t) = Ax(t) + Bu(t)}
sX(s) − x(0−) = AX(s) + BU(s) 

L{y(t) = Cx(t) + Du(t)}
Y (s) = CX(s) + DU(s) 

which gives 

(sI − A)X(s) = BU(s) + x(0−) 

⇒ X(s) = (sI − A)−1BU(s) + (sI − A)−1 x(0−) 

and 

Y (s) = C(sI − A)−1B + D U(s) + C(sI − A)−1 x(0−) 

•	 By definition G(s) = C(sI − A)−1B + D is called the Transfer 
Function of the system. 

•	 And C(sI − A)−1x(0−) is the initial condition response. 

• It is part of the response, but not part of the transfer function. 
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SS to TF


• In going from the state space model 

ẋ(t) = Ax(t) + Bu(t) 

y(t) = Cx(t) + Du(t) 

to the transfer function G(s) = C(sI − A)−1B + D need to form 
inverse of matrix (sI − A) 

• A symbolic inverse – not very easy. 

• For simple cases, we can use the following: � �−1 � � 
a1 a2 1 a4 = 

−a2 

a3 a4 a1a4 − a2a3 −a3 a1 

For larger problems, we can also use Cramer’s Rule 

• Turns out that an equivalent method is to form:1 

sI − A −B 
det 

C D 
G(s) = C(sI − A)−1B + D = 

det(sI − A) 

• Reason for this will become more apparent later (see 8–??) when 
we talk about how to compute the “zeros” of a state-space model 
(which are the roots of the numerator) 

• Key point: System characteristic equation given by 

φ(s) = det(sI − A) = 0 

• It is the roots of φ(s) = 0 that determine the poles of the system. 
Will show that these determine the time response of the system. 

see here 
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• Example from Case 2, page 6–4 ⎤⎡⎤⎡ 
1
−a1 −a2 −a3
 ⎦
,
 C
=


�T

b1 b2 b3
A =
⎣
 =
⎣
1 0 0
 0
,
 B 

0 1 0 0 

then 

⎦
⎤⎡ ⎢⎢⎢⎣


s + a1 a2 a3 −1 
−1 s 0 0 
0 −1 s 0 

0b1 b2 b3 

1

G(s) = det 

det(sI − A) 
· 

⎥⎥⎥⎦


b3 + b2s + b1s2 

= 
det(sI − A) 

and det(sI − A) = s3 + a1s2 + a2s + a3 

• Which is obviously the same as before. 
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State-Space Transformations


•	 State space representations are not unique because we have a lot of 
freedom in choosing the state vector. 

• Selection of the state is quite arbitrary, and not that important. 

•	 In fact, given one model, we can transform it to another model that 
is equivalent in terms of its input-output properties. 

•	 To see this, define Model 1 of G(s) as 

ẋ(t) = Ax(t) + Bu(t) 

y(t) = Cx(t) + Du(t) 

Now introduce the new state vector z related to the first state x• 
through the transformation x = T z 

• T is an invertible (similarity) transform matrix 

ż = T −1 ẋ = T −1(Ax + Bu) 

= T −1(AT z + Bu) 

= (T −1AT )z + T −1Bu = Āz + B̄u 

and 
¯ ¯y = Cx + Du = CT z + Du = Cz + Du 

So the new model is • 

ż = Āz + B̄u 
¯ ¯y	 = Cz + Du 

• Are these going to give the same transfer function? They must if 
these really are equivalent models. 
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Consider the two transfer functions: • 

G1(s) = C(sI − A)−1B + D 

G2(s) = C̄(sI − Ā)−1B̄ + D̄

Does G1(s) ≡ G2(s) ? 

G1(s) = C(sI − A)−1B + D 

= C(TT −1)(sI − A)−1(TT −1)B + D 

= (CT ) T −1(sI − A)−1T (T −1B) + D̄

= (C̄) 
� 
T −1(sI − A)T 

�−1 
(B̄) + D̄

= C̄(sI − Ā)−1B̄ + D̄ = G2(s) 

•	 So the transfer function is not changed by putting the state-space 
model through a similarity transformation. 

Note that in the transfer function • 

b1s
2 + b2s + b3

G(s) = 
s3 + a1s2 + a2s + a3 

we have 6 parameters to choose 

•	 But in the related state-space model, we have A − 3 × 3, B − 3 × 1, 
C − 1 × 3 for a total of 15 parameters. 

•	 Is there a contradiction here because we have more degrees of freedom 
in the state-space model? 

• No. In choosing a representation of the model, we are effectively 
choosing a T , which is also 3 × 3, and thus has the remaining 9 
degrees of freedom in the state-space model. 
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