Topic #6

16.30/31 Feedback Control Systems

State-Space Systems
What are state-space models?
Why should we use them?

How are they related to the transfer functions
used in classical control design and how do we
develop a state-space model?

What are the basic properties of a state-space model, and
how do we analyze these?
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TF’s to State-Space Models

e The goal is to develop a state-space model given a transfer function

for a system G(s).

e There are many, many ways to do this.

e But there are three primary cases to consider:

1. Simple numerator (strictly proper)

Y 1
- =Gls) = 3 >
U S° 4+ a18° + ass + as

2. Numerator order less than denominator order (strictly proper)

g B G(S) _ b182 + bos + b3 B N(S)
u B3t as?Fags+az  D(s)

3. Numerator equal to denominator order (proper)

Y bos® + b1s? + bys + by
Y —6(5) =
u $3 + a182 + ass + as

e [hese 3 cover all cases of interest
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e Consider case 1 (specific example of third order, but the extension
to n' follows easily)

b G(s) - 1

u s3 + a1s? + ass + as

can be rewritten as the differential equation

Y+ay+awy+asy=u

choose the output y and its derivatives as the state vector

i
X= |1
Yy
then the state equations are
3/ —Qa1 —a2 —Aas y 1
x = |y |= 1 0 0 yl+10]u
U 0 1 0 Y 0
i
y=1001]|y]|+[0u
Yy

e This is typically called the controller form for reasons that will become
obvious later on.

e There are four classic (called canonical) forms — observer, con-
troller, controllability, and observability. They are all useful in
their own way.
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e Consider case 2
5182 + bys + b3 B N(S)

Y
2 — G(s) = —
(5) 3+ a18%+ass+ag  D(s)

o |let .
u

Yy
where y/v = N(s) and v/u = 1/D(s)

Then representation of v/u = 1/D(s) is the same as case 1

U+ a0 + as + asv = u

use the state vector )
v
X=|wv
v
to get
X = AQX + BQ’LL
where
—a] —ay —as 1
AQ = 1 0 0 and BQ = 0
0 1 0 0

e Then consider y/v = N(s), which implies that
bl’i) + bQ’U + bgv

;
= [ by by b3 | | @

(%

y:

= (O9yx + [O]U
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e Consider case 3 with
. 6083 + b182 + bQS + bg
U 34182+ ass + as

_ Bis* + Bas + P
— +D
83 + CL1S2 + a9S + as

= Gl(S) + D
where

D( s° +a1s* +ags +az)

+( +B18% +Pas +53)

= b083 —|—b182 —l—sz +b3
so that, given the b;, we can easily find the j3;

D = b
B1=b — Da,

e Given the 3;, can find G1(s)

e Can make state-space model for G1(s) as in case 2
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e Then we just add the “feed-through” term Du to the output equation

from the model for G1(s)

e Will see that there is a lot of freedom in making a state-space model

because we are free to pick the x as we want
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Modal Form

e One particular useful canonical form is called the Modal Form
e It is a diagonal representation of the state-space model.

e Assume for now that the transfer function has distinct real poles p;
(easily extends to case with complex poles, see 7-77)

Ni(s N(s
cis) - M) _ (s)
D(s)  (s—pi1)(s—p2) - (s—pn)
™ T9 Tn
— + + PO +
S—PpP1  S—DP2 S — Pn
e Now define collection of first order systems, each with state x;
X1 oo N
= Iy = p1r;y T+ ru
U(s) S—P
Xo () = n
= Lo = P2o T T2U
U(s) S — P2
Xn. T ,
- = Tp = PpTp + TrU
U(S) S — DPn

e Which can be written as
x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)
with

P1 1 1

Pn T'n 1
e Good representation to use for numerical robustness reasons.

e Avoids some of the large coefficients in the other 4 canonical forms.
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State-Space Models to TF's

e Given the Linear Time-Invariant (LTI) state dynamics

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

what is the corresponding transfer function?

e Start by taking the Laplace Transform of these equations

L{x(t) = Ax(t)+ Bu(t)}
sX(s)—x(07) = AX(s)+ BU(s)

L{y(t) = Ox(t) + Du(t)}
Y(s) = CX(s)+ DU(s)

which gives

(sI — A)X(s) = BU(s)+x(07)
= X(s) = (sI —A)'BU(s) + (sI — A)"'x(07)

Y(s)=[C(s] — A)7'B+ D] U(s)+ C(s] — A)~'x(07)

e By definition G(s) = C(sI — A)™'B + D is called the Transfer
Function of the system.

e And C(sI — A)~'x(07) is the initial condition response.

e It is part of the response, but not part of the transfer function.
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SSto TF

e In going from the state space model

x(t) = Ax(t) + Bu(t)
y(t) = Ox(t)+ Du(t)

to the transfer function G(s) = C(sI — A)"'B + D need to form
inverse of matrix (s/ — A)

e A symbolic inverse — not very easy.

e For simple cases, we can use the following:

-1
ap a9 B 1 a, —am
as aq ajaqs — aga3 | —Aaz ap

For larger problems, we can also use Cramer’s Rule

e Turns out that an equivalent method is to form:!
s —A —B
det[ C D ]
det(sl — A)
e Reason for this will become more apparent later (see 8-77) when

we talk about how to compute the “zeros” of a state-space model
(which are the roots of the numerator)

G(s)=C(sI —A) B+ D =

e Key point: System characteristic equation given by
o(s) =det(s] — A) =0

e It is the roots of ¢(s) = 0 that determine the poles of the system.
Will show that these determine the time response of the system.

lsee here
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e Example from Case 2, page 6-4

—a1 —a —Aas 1 T
A= 1 0 0 |,B=|0|,C=][b by b3]
0 1 0 0
then
_S—|—CL1 as as —1-
1 —1 s 0] 0
G = - det
(5) det(sI — A) ¢ 0 -1 s]0
by by bs| O

bs + bos + b182
det(s] — A)

and det(s] — A) = s + a15° + azs + a3

e Which is obviously the same as before.
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State-Space Transformations

e State space representations are not unique because we have a lot of
freedom in choosing the state vector.

e Selection of the state is quite arbitrary, and not that important.

e In fact, given one model, we can transform it to another model that
is equivalent in terms of its input-output properties.

e To see this, define Model 1 of G(s) as

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t)+ Du(t)

e Now introduce the new state vector z related to the first state x
through the transformation x = 7'z

e T is an invertible (similarity) transform matrix
z=T"'%x = T"'(Ax + Bu)
= T YATz + Bu)
= (TT'AT)z + T 'Bu= Az + Bu

and
y=Cx+Du=CTz+ Du=Cz+ Du

e So the new model is
7z = Az + Bu
y = Cz + Du

e Are these going to give the same transfer function? They must if
these really are equivalent models.
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e Consider the two transfer functions:

Gi(s) = C(sI —A)'B+D
Gao(s) = C(sI —A)'B+D
Does G1(s) = Ga(s) 7
Gi(s) = C(sI —A)'B+D
= C(IT ") (sI — A (TT "B+ D
= (CT) [T} (sI = A)'T](T"'B)+ D
= (C) [T\ (sI = A)T] " (B)+ D
= O(sI — A)"'B+ D = Gy(s)

e So the transfer function is not changed by putting the state-space
model through a similarity transformation.

e Note that in the transfer function
b182 + bys + b3
83 + CL182 + asS + as

G(s) =

we have 6 parameters to choose

e But in the related state-space model, we have A —3 x 3, B—3 x 1,
C' — 1 x 3 for a total of 15 parameters.

e [s there a contradiction here because we have more degrees of freedom
in the state-space model?

e No. In choosing a representation of the model, we are effectively
choosing a 1', which is also 3 X 3, and thus has the remaining 9
degrees of freedom in the state-space model.
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