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Continuous- and discrete-time signals
 

Continuous-time signal 

A (scalar) continuous-time signal is a function that associates to each time 
t ∈ R a real number y(t), i.e., y : t �→ y(t). Note: We will use the 
“standard” (round) parentheses to indicate continuous-time signals. 

Discrete-time signal 

A (scalar) discrete-time signal is a function that associates to each integer 
k ∈ Z a real number y [k], i.e., y : k �→ y [k]. Note: We will use the square 
parentheses to indicate discrete-time signals. 

y(t) y [k] 

t k
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Signals are vectors
 

Multiplication by a scalar 

Let α ∈ R. The signal αy can be obtained as: 

(αy)(t) = αy(t), and (αy)[k] = αy [k]. 

Notice 0y is always the “zero” signal, where 0(t) = 0 for all t ∈ R, 
and 0[k] = 0 for all k ∈ Z, and 1y = y . 

Addition of two signals 

Let u and v be two signals of the same kind (i.e., both in continuous 
or discrete time). 

The signal u + v is defined as: 

(u + v)(t) = u(t) + v(t), and (u + v)[k] = u[k] + v [k]. 

Notice that u − u = u + (−1)u = 0. 
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Systems
 

Definition (system) 

A system is an operator that transforms an input signal u into a unique 
output signal y . 

u(t) y(t) 

t t 
u(t) y(t) 

System 
u[k] y [k] 

u[k] y(t) 

tk 
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A classification
 

Continuous-Time System: CT → CT 

This is the kind of systems you studied in 16.06. 

Discrete-Time System: DT → DT 

We will study this kind of systems in this class. 

Sampler: CT → DT 

This class includes sensors, and A/D (Analog → Digital) converters. 
Let us call a sampler with sampling time T a system such that 

y [k] = u(kT ). 

Hold: DT → CT 

This class includes actuators, and D/A (Digital → Analog) converters. 
A Zero-Order Hold (ZOH) with holding time T is such that 

y (t) = u 
�� t 

T 

�� 
. 
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Static/Memoryless systems
 

Definition (Memoryless system) 

A system is said to be memoryless (or static) if, for any t0 ∈ R (resp. 
k0 ∈ Z), the output at time t0 (resp. at time k0) depends only on the 
input at time t0 (resp. at step k0). 

This is the most basic kind of system. Essentially the output can be 
written as a “simple” function of the input, e.g., 

y(t) = f (u(t)), y [k] = f (u[k]). 

Examples: 

A proportional compensator; 

A spring; 

An electrical circuit with resistors only.
 

In general, systems behave in a more complicated way.
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Causality
 

Definition (Causal system) 

A system G is said to be causal if, for any t0 ∈ R (resp., k0 ∈ Z) the 
output at time t0 (resp. at step k0) depends only on the input up to, and 
including, time t0 (resp. up to, and including, step k0). 

Definition (Strictly causal system) 

A system is said to be strictly causal if the dependency is only on the input 
preceding t0 (resp., k0). 

A system is causal if it is non-anticipatory, i.e., it cannot respond to inputs 
that will be applied in the future, but only on past and present inputs. 
(Strictly causal systems only depend on past inputs). 

Note that a static system is causal, but not strictly causal. 
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Some remarks on causality 

Most control systems that are implementable in practice are, in fact,
 
causal. In general, it is not possible to predict the inputs that will be
 
applied in the future.
 
However, there are some cases in which non-causal systems can actually
 
be interesting to study:
 

On-board sensors may provide “look-ahead” information. 
For example, in a nap-of-the-Earth flying mission, the path to the 
next waypoint, and the altitude profile, may be known in advance. 

Commands may belong to a pre-defined class. 
For example, an autopilot that is programmed to execute an acrobatic 
maneuver (e.g., a loop). 

Off-line processing. 
For example, a system that is used as a filter to smooth a certain 
signal, or possibly to “rip” a song from a CD to an MP3 file. 
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Time delays
 

Definition (Time-delay system) 

A time-delay system, or more simply a time delay, is a system ST such that 

y(t) = ST (u(t)) = u(t − T ) in continuous time; 

y [k] = ST (u[k]) = u[k − T ] in discrete time; 

u 

⇒ 
ST 

u 

T 

t t
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Time invariance
 

Definition (Time invariant system) 

A system is time invariant if it commutes with time delays. In other words, 
the output to a time-delayed input is the same as the time-delayed output 
to the original input. 

u(t) 
TI System 

y(t) 
Time delay 

y(t − T ) 

=
 
u(t) 

Time delay 
u(t − T ) 

TI System 
y(t − T ) 

More simply, the response of a time-invariant system does not depend on 
where you put the origin on the time axis (but it depends on the direction 
in which time flows). 
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State of a system 

We know that, if a system is causal, in order to compute its output at a 
given time t0, we need to know “only” the input signal over (−∞, t0]. 
(Similarly for DT systems.) 

This is a lot of information. Can we summarize it with something more 
manageable? 

Definition (state) 

The state x(t1) of a causal system at time t1 (resp. at step k1) is the 
information needed, together with the input u between times t1 and t2 

(resp. between steps k1 and k2), to uniquely predict the output at time t2 

(resp. at step k2), for all t2 ≥ t1 (resp. for all steps k2 ≥ k1). 

In other words, the state of the system at a given time summarizes the 
whole history of the past inputs −∞, for the purpose of predicting the 
output at future times. 

Usually, the state of a system is a vector in some n-dimensional space Rn . 
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Dimension of a system
 

The choice of a state for a system is not unique (in fact, there are infinite 
choices, or realizations). 

However, there are come choices of state which are preferable to others; in 
particular, we can look at “minimal” realizations. 

Definition (Dimension of a system) 

We define the dimension of a causal system as the minimal number of 
variables sufficient to describe the system’s state (i.e., the dimension of 
the smallest state vector). 

We will deal mostly with finite-dimensional systems, i.e., systems which 
can be described with a finite number of variables. 
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Some remarks on infinite-dimensional systems
 

Even though we will not address infinite-dimensional systems in detail, 
some examples are very useful: 

(CT) Time-delay systems: Consider the very simple time delay ST , 
defined as a continuous-time system such that its input and outputs 
are related by 

y(t) = u(t − T ). 

In order to predict the output at times after t, the knowledge of the 
input for times in (t − T , t] is necessary. 

PDE-driven systems: Many systems in aerospace, arising, e.g., in 
structural control and flow control applications, can only be described 
exactly using a continuum of state variables (stress, displacement, 
pressure, temperature, etc.). These are infinite-dimensional systems. 

In order to deal with infinite-dimensional systems, approximate discrete 
models are often used to reduce the dimension of the state. 
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Linear Systems
 

Definition (Linear system) 

A system is said a Linear System if, for any two inputs u1 and u2, and any 
two real numbers α, β, the following are satisfied: 

u1 → y1, 

u2 → y2, 

αu1 + βu2 → αy1 + βy2. 

Superposition of effects 

This property is very important: it tells us that if we can decompose a 
complicated input into a sum of simple signals, we can obtain the output 
as the sum of the individual outputs corresponding to the simple inputs. 
Examples (in CT, same holds in DT): 

Taylor series: u(t) = 
�∞

i=0 ci t
i . 

Fourier series: u(t) = 
�∞

i=0 (ai cos(i t) + bi sin(i t)). 

(MIT) Topic 5 addendum: Signals, Systems Fall 2010 19 / 27 



State-space model 

Finite-dimensional linear systems can always be modeled using a set of differential (or 
difference) equations as follows: 

Definition (Continuous-time systems) 

d 
dt 

x(t) = A(t)x(t) + B(t)u(t); 

y (t) = C (t)x(t) + D(t)u(t); 

Definition (Discrete-time systems) 

x [k + 1] = A[k]x [k] + B[k]u[k]; 

y [k] = C [k]x [k] + D[k]u[k]; 

The matrices appearing in the above formulas are in general functions of 
time, and have the correct dimensions to make the equations meaningful. 
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LTI State-space model 

If the system is Linear Time-Invariant (LTI), the equations simplify to: 

Definition (Continuous-time systems) 

d 
dt 

x(t) = Ax(t) + Bu(t); 

y(t) = Cx(t) + Du(t); 

Definition (Discrete-time systems) 

x [k + 1] = Ax [k] + Bu[k]; 

y [k] = Cx [k] + Du[k]; 

In the above formulas, A ∈ Rn×n , B ∈ Rn×1 , C ∈ R1×n , D ∈ R, and n is the 
dimension of the state vector. 
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Example of DT system: accumulator
 

Consider a system such that 
k−1 

y [k] = u[i ]. 
i=−∞ 

Notice that we can rewrite the above as 

k−2 

y [k] = u[i ] + u[k − 1] = y [k − 1] + u[k − 1]. 
i=−∞ 

In other words, we can set x [k] = y [k] as a state, and get the following state-space model: 

x [k + 1] = x [k] + u[k], 

y [k] = x [k]. 

Let x [0] = y [0] = 0, and u[k] = 1; we can solve by repeated substitution: 

x [1] = x [0] + u[0] = 0 + 1 = 1, y [1] = x [1] = 1; 

x [2] = x [1] + u[1] = 1 + 1 = 2, y [2] = x [2] = 2; 

. . . 

x [k] = x [k − 1] + u[k − 1] = k − 1 + 1 = k, y [k] = x [k] = k; 
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LTI State-space models in Matlab
 

Example (Continuous-time LTI system) 

>> A= [1, 0.1; 0, 1]; B= [1; 2]; C = [3, 4]; D=0; 
>> P = ss(A,B,C,D) 

a = 
x1 x2 

x1 1 0.1 
x2 0 1 

b = 
u1 

x1 1 
x2 2 

c = 
x1 x2 

y1 3 4 

d = 
u1 

y1 0 

Continuous-time model. 
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LTI State-space models in Matlab
 

Example (Discrete-time LTI system) 

>> A= [1, 0.1; 0, 1]; B= [1; 2]; C = [3, 4]; D=0; Ts = 0.2; 
>> P = ss(A,B,C,D,Ts) 

a = 
x1 x2 

x1 1 0.1 
x2 0 1 

b = 
u1 

x1 1 
x2 2 

c = 
x1 x2 

y1 3 4 

d = 
u1 

y1 0 

Sampling time: 0.2 
Discrete-time model. 
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Finite-dimensional Linear Systems 1/2
 

Recall the definition of a linear system. Essentially, a system is linear 
if the linear combination of two inputs generates an output that is the 
linear combination of the outputs generated by the two individual 
inputs. 

The definition of a state allows us to summarize the past inputs into 
the state, i.e., � 

u(t), −∞ ≤ t ≤ +∞ ⇔ 
x(t0), 
u(t), t ≥ t0, 

(similar formulas hold for the DT case.) 

We can extend the definition of linear systems as well to this new 
notion. 

(MIT) Topic 5 addendum: Signals, Systems Fall 2010 25 / 27 



Finite-dimensional Linear Systems 2/2
 

Definition (Linear system (again)) 

A system is said a Linear System if, for any u1, u2, t0, x0,1, x0,2, and any 
two real numbers α, β, the following are satisfied: � 

x(t0) = x0,1, 
u(t) = u1(t), t ≥ t0, 

→ y1, 

� 
x(t0) = x0,2, 
u(t) = u2(t), t ≥ t0, 

→ y2, 

� 
x(t0) = αx0,1 + βx0,2, 
u(t) = αu1(t) + βu2(t), t ≥ t0, 

→ αy1 + βy2. 

Similar formulas hold for the discrete-time case. 
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Forced response and initial-conditions response 

Assume we want to study the output of a system starting at time t0, knowing the 
initial state x(t0) = x0, and the present and future input u(t), t ≥ t0. Let us study 
the following two cases instead: 

Initial-conditions response: � 
xIC(t0) = x0, 
uIC(t) = 0, t ≥ t0, 

→ yIC; 

Forced response: � 
xF(t0) = 0, 
uF(t) = u(t), t ≥ t0, 

→ yF. 

Clearly, x0 = xIC + xF, and u = uIC + uF, hence 

y = yIC + yF, 

that is, we can always compute the output of a linear system by adding the output 
corresponding to zero input and the original initial conditions, and the output 
corresponding to a zero initial condition, and the original input. 
In other words, we can study separately the effects of non-zero inputs and of 
non-zero initial conditions. The “complete” case can be recovered from these two. 
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