
Topic #3 

16.30/31 Feedback Control Systems 

Frequency response methods 

•	 Analysis 

•	 Synthesis 

Performance • 

•	 Stability in the Frequency Domain 

•	 Nyquist Stability Theorem 
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FR: Introduction


Root locus methods have: • 

• Advantages: 

∗ Good indicator of transient response; 
∗ Explicitly shows location of all closed-loop poles; 
∗ Trade-offs in the design are fairly clear. 

• Disadvantages: 

∗ Requires a transfer function model (poles and zeros); 
∗ Difficult to infer all performance metrics; 
∗ Hard to determine response to steady-state (sinusoids) 
∗ Hard to infer stability margins 

•	 Frequency response methods are a good complement to the root locus 
techniques: 

• Can infer performance and stability from the same plot 

Can use measured data rather than a transfer function model • 

• Design process can be independent of the system order 

• Time delays are handled correctly 

• Graphical techniques (analysis and synthesis) are quite simple. 
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Frequency Response Function


•	 Given a system with a transfer function G(s), we call the G(jω), 
ω ∈ [0, ∞) the frequency response function (FRF) 

G(jω) = |G(jω)|�G(jω) 

• The FRF can be used to find the steady-state response of a 
system to a sinusoidal input since, if 

e(t) y(t) 
G(s) 

and e(t) = sin 2t, |G(2j)| = 0.3, �G(2j) = −80◦ , then the 
steady-state output is 

y(t) = 0.3 sin(2t − 80◦) 

⇒ The FRF clearly shows the magnitude (and phase) of the re­
sponse of a system to sinusoidal input 

•	 A variety of ways to display this: 

1. Polar (Nyquist) plot – Re vs. Im of G(jω) in complex plane. 

• Hard to visualize, not useful for synthesis, but gives definitive 
tests for stability and is the basis of the robustness analysis. 

2. Nichols Plot – |G(jω)| vs. �G(jω), which is very handy for sys­
tems with lightly damped poles. 

3.	Bode Plot – Log |G(jω)| and �G(jω) vs. Log frequency. 

• Simplest tool for visualization and synthesis 
• Typically plot 20log |G| which is given the symbol dB 

September 15, 2010 



���� ����


Fall 2010	 16.30/31 3–4 

• Use logarithmic since if 

log |G(s)| =

(s + 1)(s + 2)

(s + 3)(s + 4)


=	 log |s + 1| + log |s + 2| − log |s + 3| − log |s + 4| 

and each of these factors can be calculated separately and then added 
to get the total FRF. 

•	 Can also split the phase plot since 

�
(s + 1)(s + 2) 

= �(s + 1) + �(s + 2) 
(s + 3)(s + 4) 

−�(s + 3) − �(s + 4) 

•	 The keypoint in the sketching of the plots is that good straightline 
approximations exist and can be used to obtain a good prediction of 
the system response. 
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Bode Example


Draw Bode for •	
s + 1 

G(s) = 
s/10 + 1 

G(jω) = 
|jω + 1|| |

|jω/10 + 1|


log |G(jω)| = log[1 + (ω/1)2]1/2 − log[1 + (ω/10)2]1/2


•	 Approximation 

log[1 + (ω/ωi)
2]1/2 0 ω � ωi ≈ 

log[ω/ωi] ω � ωi


Two straightline approximations that intersect at ω ≡ ωi


•	 Error at ωi obvious, but not huge and the straightline approximations 
are very easy to work with. 

Fig. 1: Frequency response basic approximation
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• To form the composite sketch, 

• Arrange representation of transfer function so that DC gain of 
each element is unity (except for parts that have poles or zeros at 
the origin) – absorb the gain into the overall plant gain. 

• Draw all component sketches 

• Start at low frequency (DC) with the component that has the 
lowest frequency pole or zero (i.e. s=0) 

• Use this component to draw the sketch up to the frequency of the 
next pole/zero. 

• Change the slope of the sketch at this point to account for the 
new dynamics: -1 for pole, +1 for zero, -2 for double poles, . . . 

• Scale by overall DC gain 

Fig. 2: G(s) = 10(s + 1)/(s + 10) which is a lead.
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•	 Since �G(jω) = �(1 + jω) − �(1 + jω/10), we can construct phase 
plot for complete system in a similar fashion 

• Know that �(1 + jω/ωi) = tan−1(ω/ωi) 

•	 Can use straightline approximations ⎧ ⎨ 0 ω/ωi ≤ 0.1 
�(1 + jω/ωi) ≈ ⎩ 

90◦ ω/ωi ≥ 10 
45◦ ω/ωi = 1 

• Draw components using breakpoints that are at ωi/10 and 10ωi


Fig. 3: Phase plot for (s + 1)
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•	 Then add them up starting from zero frequency and changing the 
slope as ω → ∞ 

Fig. 4: Phase plot G(s) = 10(s + 1)/(s + 10) which is a “lead”.


September 15, 2010 



Fall 2010	 16.30/31 3–9


Frequency Stability Tests


•	 Want tests on the loop transfer function L(s) = Gc(s)G(s) that can 
be performed to establish stability of the closed-loop system 

Gc(s)G(s)
Gcl(s) = 

1 + Gc(s)G(s) 

• Easy to determine using a root locus. 

• How do this in the frequency domain? i.e., what is the simple 
equivalent of the statement “does root locus go into RHP”? 

•	 Intuition: All points on the root locus have the properties that 

�L(s) = ±180◦ and |L(s)| = 1 

• So at the point of neutral stability (i.e., imaginary axis crossing), 
we know that these conditions must hold for s = jω 

• So for neutral stability in the Bode plot (assume stable plant), 
must have that �L(jω) = ±180◦ and |L(jω)| = 1 

So for most systems we would expect to see L(jω) < 1 at the • 
frequencies ωπ for which �L(jωπ) = ±180◦

| | 

•	 Note that �L(jω) = ±180◦ and |L(jω)| = 1 corresponds to L(jω) = 
−1 + 0j 

September 15, 2010 
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Gain and Phase Margins


•	 Gain Margin: factor by which the gain is less than 1 at the frequen­
cies ωπ for which �L(jωπ) = 180◦ 

GM = −20 log |L(jωπ)| 

•	 Phase Margin: angle by which the system phase differs from 180◦ 

when the loop gain is 1. 

• Let ωc be the frequency at which |L(jωc)| = 1, and φ = �L(jωc) 
(typically less than zero), then 

PM = 180◦ + φ 

•	 Typical stable system needs both GM > 0 and PM > 0 

Fig. 5: Gain and Phase Margin for stable system in a polar plot
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Fig. 6: Gain and Phase Margin in Polar plots


Fig. 7: Gain and Phase Margin in Bode plots 

• Can often predict closed-loop stability looking at the GM and PM 
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•	 So the test for neutral stability is whether, at some frequency, the 
plot of L(jω) in the complex plane passes through the critical point 
s = −1 

� 

-1 

GcG(jω) 

Fig. 8: Polar plot of a neutrally stable case 

•	 This is good intuition, but we need to be careful because the previous 
statements are only valid if we assume that: 

• Increasing gain leads to instability 

• |L(jω)| = 1 at only 1 frequency 

which are reasonable assumptions, but not always valid. 

•	 In particular, if L(s) is unstable, this prediction is a little more com­
plicated, and it can be hard to do in a Bode diagram need more ⇒ 
precise test. 

•	 A more precise version must not only consider whether L(s) passes 
through −1, but how many times it encircles it. 

• In the process, we must take into account the stability of L(s) 
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Nyquist Stability


•	 Key pieces: an encirclement – an accumulation of of 360◦ of 
phase by a vector (tail at s0) as the tip traverses the contour c ⇒ c 
encircles s0 
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• We are interested in the plot of L(s) for a very specific set of values 
of s, called the Nyquist Path. 

• Case shown assumes that L(s) has no imaginary axis poles, which 
is where much of the complexity of plotting occurs. 

• Also note that if lims  L(s) = 0, then much of the plot of L(s) →∞
for values of s on the Nyquist Path is at the origin. 

•	 Nyquist Diagram: plot of L(s) as s moves around the Nyquist 
path C2 

September 15, 2010 
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•	 Steps: 

• Construct Nyquist Path for particular L(s) 

• Draw Nyquist Diagram 

• Count # of encirclements of the critical point -1 

•	 Why do we care about the # of encirclements? 

• Turns out that (see appendix) that if L(s) has any poles in the 
RHP, then the Nyquist diagram/plot must encircle the critical 
point -1 for the closed-loop system to be stable. 

•	 It is our job to ensure that we have enough encirclements – how many 
do we need? 

•	 Nyquist Stability Theorem: 

• P = # poles of L(s) = G(s)Gc(s) in the RHP 

• Z = # closed-loop poles in the RHP 

• N = # clockwise encirclements of the Nyquist Diagram about the 
critical point -1. 

Can show that Z = N + P 
⇒ So for the closed-loop system to be stable (i.e., no closed-loop 
poles in the RHP), need 

Z � 0 N⇒ = −P 

• Note that since P ≥ 0, then would expect CCW encirclements 
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•	 The whole issue with the Nyquist test boils down to developing a 
robust way to make accurate plots and count N . 

• Good approach to find the # of crossing from a point s0 is: 

∗ Draw a line from s0 

∗ Count # of times that line and the Nyquist plot cross 

N	= #CWcrossings − #CCWcrossings 

• Observation: If the stability of the system is unclear from the Bode 
diagram, then always revert to the Nyquist plot. 
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FR: Summary


•	 Bode diagrams are easy to draw 

•	 Will see that control design is relatively straight forward as well 

•	 Can be a bit complicated to determine stability, but this is a relatively 
minor problem and it is easily handled using Nyquist plots 

•	 Usually only necessary to do one of Bode/Root Locus analysis, but 
they do provide different perspectives, so I tend to look at both in 
sisotool. 

•	 Nyquist test gives us the desired frequency domain stability test 

• Corresponds to a test on the number of encirclements of the critical 
point 

•	 For most systems that can be interpreted as needing the GM > 0 
and PM > 0 

• Typically design to GM ∼ 6dB and PM ∼ 30◦ − 60◦ 

•	 Introduced S(s) as a basic measure of system robustness. 
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