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Let u be the actual configuration of a structure or mechanical system. u
satisfies the displacement boundary conditions: u = u* on S,. Define:

U =u+ av, where:
« : scalar

v : arbitrary function such that v =0 on S,
We are going to define awv as du, the first variation of u:
du = av (1)
Schematically:
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As a first property of the first variation:
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so we can identify a% with the first variation of the derivative of wu:

du dv
3(a) =5
But:
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We conclude that:

du d
() = v
Consider a function of the following form:

F = F(z,u(z),u'(z))

It depends on an independent variable x, another function of z (u(z)) and its
derivative (u'(x)). Consider the change in F', when u (therefore u') changes:

AF = F(x,u+ du,u’ + ou') — F(x,u,u')
= F(z,u+ av,v + av') — F(x,u,u)

expanding in Taylor series:
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First total variation of F:
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Note that:
dF (z,u+ av,u' + av')

OF =
“ do a=0
since:

dF (z,u+ av,u' + ') OF(z,u+ av,u’ + av’) OF (z,u+ av,u’ + av') ,
= v+ v

do ou o/

evaluated at o = 0
dF (z,u+ av,u’ + av’) OF (z,u,u) OF (z,u,u’)
= v + v
da a=0 ou o’

Note analogy with differential calculus.

d(aFy + bFy) = adF) + bOF;, linearity
5(F1F2) - (SFlFQ + F15F2

etc

The conclusions for F(z,u,u’) can be generalized to functions of several
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independent variables z; and functions wu;, gz_:
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We will be making intensive use of these properties of the variational operator
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Concept of a functional



First variation of a functional:
ol = 5(/ F(x,u(m),u'(w))dw)
= /5<F(az, u(x), u’(w)))dx

5T = /(g—Féu—l— ?@)d

Extremum of a functional
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ug” is the minumum of a functional if:

I(u) > I(up)Vu

A necessary condition for a functional to attain an extremum at “ug” is:

dl
61 (up) =0, or @(uo + av, uy + av') = 0

Note analogy with differential calculus. Also difference since here we require
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Integrate by parts the second term to get rid of ou'.
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Require du to satisfy homogeneous displacement boundary conditions:

Then:



Vou that satisfy the appropriate differentiability conditions and the homoge-
neous essential boundary conditions. Then:
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These are the Fuler-Lagrange equations corresponding to the variational
problem of finding an extremum of the functional .

Natural and essential boundary conditions A weaker condition on
ou also allows to obtain the Euler equations, we just need:

%&L Z =0
which is satisfied if:
e Ju(a) =0 and du(b) = 0 as before
e Su(b) =0and 2£(b) =0
e 98(a) =0 and du(b) =0

e %8(a)=0and 25(b) =0

Essential boundary conditions: 5u|5 =0, or u =wug on Sy,

Natural boundary conditions: % =0on S.

Example: Derive Euler’s equation corresponding to the total po-
tential energy functional Il = U + V of an elastic bar of length L, Young’s
modulus E, area of cross section A fixed at one end and subject to a load P
at the other end.

I(u) = /OL EQA (jg) dz — Pu(L)

Compute the first variation:

FA du
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Integrate by parts

oI = [% (EAZ—ZM) . % (EA%)M} dz — Péu(L)
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Setting oI = 0,V du / du(0) = 0:
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Extension to more dimensions
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Using divergence theorem:
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Extremum of functional [ is obtained when 67 = 0, or when:
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The boxed expressions constitute the Euler-Lagrange equations correspond-
ing to the variational problem of finding an extremum of the functional I.



