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Work

Figure 1: Work of a force on a moving particle



e Work done by a force:

AW =f - du = fiu; = ||f]| ||dul| cos (fu) (1)
B B
WAB:/ dW:/ f-du (2)
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e Work done by a moment:
B B
WAB—/ dW—/ M - df (4)
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e Fxtend definition to material bodies: total work is the addition of the
work done on all particles:

— by forces distributed over the volume:

W = / f-udV
1%
— by forces distributed over the surface:
W = / t-udS
S

— by concentrated forces:
i=1

Another classification:

e Work done by external forces: we will assume that external forces don’t
change during the motion or deformation, i.e., they are independent
of the displacements. This will lead to the potential character of the
external work and to the definition of the potential of the external forces
as the negative of the work done by the external forces.

e Work done by internal forces: the internal forces do depend on the
deformation.

In general, the work done by external forces and the work done by
internal forces don’t match (we saw that part of the work changes the
kinetic energy of the material).
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Figure 2: Spring loaded with a constant force
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Example: Consider the following spring loaded with a constant force:

Wg = Fo, F doesn’t change when u goes from 0 to

5
W= f F(u)du, Fg : force on spring
0

u 1
= / kudu = —kd?
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Remarks:
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o Wr = W; would imply 6 = 272, which contradicts equilibrium: § =

Y
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e before the final displacement ¢ is reached the system is not in equilib-
rium. How can you explain this?

Strain energy and strain energy density

Figure 3: Strain energy density

Strain energy and strain energy density (see also unit on first law
of thermodynamics):

U= /V UpdV (10)

From first law:
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Uy = / oi;de;; |, not necessarily linear elastic
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Linear case:

€ij 1 1
Uy = / CijlekldEij = 5 ijkl€kl€ij = §Uz'j€z'j (11>
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Complementary strain energy and complementary strain energy
density

Figure 4: Complementary strain energy density

U* = / Uzdv (12)
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Linear case: €;; = S;jr0r, where Sjjp = C’ijkl

L[ 1 1
Uy = / Sijkiordoi; = 39k OkOG = 5€ij 0 (14)
0
= |UJ = Uy | for a linear elastic material (15)

Example: Compute the strain energy density, strain energy, and their
complementary counterparts for the linear elastic bar loaded axially shown
in the figure:

€0 —veg
Uo = / 011d611 + / O'QQCZGQQ —+ ...
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= / E€11d€11 = —EG%
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From equilibrium we know: og = %.

From the constitutive law: ¢y = % = %
1 P?
= Uo=55p
ALP*  P?L
U= | UpdV = =
/V ’ 2EA? ~ 2EA
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Potential Energy

Capacity of the system (material body + external forces) to return work

I[I=U+V|V: potential of external loads (16)
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This expression applies to linear elastic materials (why?).




