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Constitutive Equations

For elastic materials:

ol
0y = 0ij(€) = P des (1)
If the relation is linear:
0ij = Cijuien |, Generalized Hooke’s Law (2)

In this expression: Cjji; fourth-order tensor of material properties or Elastic
moduli (How many material constants?). Making use of the symmetry of the
stress tensor:

oij = 0ji = Cjig = Cijm (3)
Proof by (generalizable) example:

021 = Corki€rr, 012 = Cropi€r
o1 = 012 = Corer = Clrop€n
(Cott — Chram) e = 0 =
Corpt = Chop



which generalizes to the statement. This reduces the number of material
constants from 81 to 54. In a similar fashion we can make use of the symmetry
of the strain tensor

€ij = €ji = Cijiw = Cij (4)

This further reduces the number of material constants to 36. To further
reduce the number of material constants consider the conclusion from the
first law for elastic materials, equation (1):

gij = %, Uy : strain energy density per unit volume (5)
Eij
oUy
Cijri€rt = 9ei (6)
0 9*Uy
e, (%) = 5,5, g
92Uy
POt = 7
Cijki0kmOi Demmdes (8)
02U,
J (9€mn(96ij ( )

Assuming equivalence of the mixed partials:

rU, 0,
8ek186ij N 861-]06“

Cijrt = = Chuij (10)
This further reduces the number of material constants to 21. The most
general anisotropic linear elastic material therefore has 21 material constants.
We are going to adopt Voigt’s notation:

_011_ _011 Cha Cizs Cu Cis 016- [ €11 ]
022 Co Cys Oy Cas Cog €22
33| _ Cs3 Csy Cs5 Csg _ | €33 (11)
023 Cu Cis Cys 2¢€93
013 symm Css  Cse 2¢€13
1012 ] L 066_ _2612_

When the material has symmetries in its structure the number of material
constants is reduced even further (see Unified treatment of this material).
We are going to concentrate on the isotropic case:



Isotropic linear elastic materials

Most general isotropic 4th order isotropic tensor:

Cijkl = N0;j0R; + ﬂ((sikéjl + (5iz5jk) (12)
Replacing in:
0ij = Cijri€ri (13)
gives:
oij = A€k + u(eij + Eﬂ) (14)
0ij = N0jj€rk + M(Eij + Ejl') (15)
Examples

o1 = Ao (€11 + €22 + €33) + p(enn + 1) = (A4 2p) 11 + Aeaz + Aegs (16)
012 = 2#612 (17>

Practice problem: Write the matrix of coefficients C' (elastic moduli)
for an isotropic material (Voigt form) in Mathematica.

Compliance matrix for an isotropic elastic material

From experiments one finds:

17
‘1= o V(Uzz + 033) (18)
17
€ = % |02 — (o + 033) (19)
17
€33 = ;|88 — v(on + 022) (20)
2€93 %, 2e13 = ?13, 2¢10 = % (21)

In these expressions, E is the Young’s Modulus, v the Poisson’s ratio and
G the shear modulus. They are referred to as the engineering constants,
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since they are obtained from experiments. In Unified we demonstrated that

G = 2(1—]111) This expressions can be written in the following matrix form:
_611_ _% —% —% 0 O O_ 0'11_
€929 % —% 0O 0 O 0929
1
€33 . - 0O 0 O 033
2623 B é 0 0 093 <22>
2613 symm é 0 013
_2612_ | é_ 012 |
Invert and compare with:
_0'11_ —/\ + 2/,L A A 0 0 O [ €11 i
099 )\ ‘l‘ 2M )\ O O O €99
o p 00 2€93 <23>
013 symm K 2€13
| 012 ] L Bl [2€12]
and conclude that:
E
A= . u=G (24)



Plane stress

Consider situations in which:

oi3 =10
x2
x1
x3
Then:
1
€11 = E(Ull - 1/022)
1
€22 = E(Um - 7/011)
—V
€33 = f(gn + 022) # 0!l
€23 = €13 =10
0192 (1 + I/)O’12
€2 =5~ =" =
2G E
In matrix form:
€11 1 1 —V 0 011
€99 = E -V 1 0 092
2€19 0 0 2(1 + l/) 012

(25)

(31)



Inverting gives the relations among stresses and strains for plane stress:

011 B 1 v 0 €11
O | = 1 5 v 1 0 €99 (32)
012 Y 0 0 (1;1/) 2612
Plane strain
In this case we consider situations in which:
€i3 = 0 (33)
Then:
1
€33 =0 = 5 [033 — 1/(011 + 022)], or: (34)
o33 = V(011 + 022) (35)
€11 = {011 -V 022 + V(Un + 022)}}
(36)
E[ 011—V(1+V)<722]
€99 = E [(1 — I/2>0‘22 — I/(l + V)O'll} (37)
In matrix form:
€11 1 1— V2 —V(l + V) 0 011
_ 2
€929 = E —I/(l + I/) 1—v 0 029 (38)
2612 0 0 2(1 + V) 012

Inverting gives the relations among stresses and strains for plane strain:

011 B 1—v 124 0 €11

O9s | = v 1—v 0 €29 (39)
(I1+v)(1-2v) 0 w2l 9,
2

e}

012

Practice problem: Verify equations (32) and (39) using Mathematica.




0.0.1 Thermal strains

We are going to consider the strains produced by changes of temperature
(€9). These strains have inherently a dilatational nature (thermal expansion
or contraction) and do not cause any shear. Thermal strains are proportional
to temperature changes. For isotropic materials:

Efj = OéA@(Sij (40)

The total strains (e;;) are then due to the (additive) contribution of the
mechanical strains (ef‘f ), i.e., those produced by the stresses and the thermal
strains:

€ij = 6?;-1 + 6?]- (41>
0ij = Cijuen = Cijilen — €py), or (42)
Oij = C@'jkl(@cl - 04A95kz) (43>

Practice problem: Write the relationship between stresses and strains
for an isotropic elastic material whose Lamé constants are A and p and whose
coefficient of thermal expansion is . constants and




	Thermal strains

