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Review of “Basic” Torsion Theory
SOLID CROSS-SECTIONS (St. Venant Theory)
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* Rigid rotation of cross-section
* Free to warp
* 0,,, O, Only nonzero stresses
da _ T L .
dz GJ GJ = tors!onal rigidity
J = torsion constant
Stress resultant= T = \ogx + ogy
OPEN, THIN-WALLED SECTIONS (Membrane Analogy)
e
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Same governing equation and B.C. for
torsion and pressurized membrane
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Analogy:
Membrane Torsion
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Apply to a narrow rectangular cross-section
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CLOSED, THICK-WALLED SECTIONS

¢ = C, on one boundary

¢ = C, on one boundary
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f tds = 2AGk on any closed boundary

THIN-WALLED CLOSED SECTIONS

T(es CONstant through thickness

frds - 2GKA

“shear flow”. g=rtt

t

A = enclosed area

Bredt’s formula T
Tresultant = 2At

4/
ds
i
Note: Free-to-warp assumptions violated near end constraints
for all torsion problems.

J =
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