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As we’ve previously noted, we may often want to describe a
structure in various axis systems. This involves...

Transformations

(Axis, Deflection, Stress, Strain, Elasticity Tensors)
e.g., loading axes <--> material principal axis
Figure7.1  Unidirectional Composite with Fibers at an Angle
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Know stresses along loading axes, but want to know stresses
(or whatever) in axis system referenced to the fiber.
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Problem: get expressions for (whatever) in one axis system in terms of

(whatever) in another axis system
(Review from Unified)

Recall: nothing is inherently
changing, we just describe a body
from a different reference.

Use ~ (tilde) to indicate transformed axis system.
Figure7.2 General rotation of 3-D rectangular axis system
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“Define” this transformation via direction cosines

(== cosine of angle fromy_toy,

Notes: by convention, angle is measured positive
counterclockwise (+ CCW)
(not needed for cosine)

(= =/ ~ since cos is an even function
cos (0) = cos (-9)

(reverse direction)

But /= =/ ~
angle differs by 26!

The order of a tensor governs the transformation needed. An nth order
tensor requires an nt" order transformation (can prove by showing link of
order of tensor to axis system via governing equations).
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Thus:

Quantity Transformation Equation Physical Basis
Stress Om = lrp ‘g Opq equilibrium
Strain €m = Lip g €pg geometry
AXis Xm = Lap Xp geometry
Displacement Uy = lgp Uy geometry
Elasticity Tensor Evpg = v Uris (pt {qu Brqu  HOOKE'S law

In many cases, we deal with 2-D cases
(replace the latin subscripts by greek subscripts)
€.g., 60([3 = Lgg KBT Opr

(These are written out for 2-D in the handout).

Paul A. Lagace © 2001 Unit7-p.5



MIT - 16.20 Fall, 2002

An important way to illustrate transformation of stress and strain in 2-D is
via Mohr’s circle (recall from Unified). This was actually used B.C. (before
calculators). It is a geometrical representation of the transformation.

(See handout).
(you will get to work with this in a problem set).

Also recall...
(Three) Important Aspects Associated with Stress/Strain Transformations

1. Principal Stresses / Strains (Axes): there Is a set of axes into
which any state of stress / strain can be resolved such that
there are no shear stresses / strains

--> o; depend on applied loads
--> g; depend on applied loads and material response

Thus, note:
For general materials...

axes for principal strain = axes for principal stress
Generally:
(have nothing to do with) material principal axes = principal
axes of stress / strain
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Find via roots of equation:

Paul A. Lagace © 2001

017 — T 012 013
Oq2 Opp = 7T Oo3 =0
013 Oo3 O33 — 7T

eigenvalues: oy, oy, Oy
(same for strain)

Invariants: certain combinations of stresses / strains are

iInvariant with respect to the axis system.

Most important: X (extensional stresses / strains) = Invariant
very useful in back-of-envelope / “quick check” calculations

Extreme shear stresses / strains: (in 3-D) there are three planes

along which the shear stresses / strains are maximized.

These values are often used in failure analysis (recall Tresca
condition from Unified).

These planes are oriented at 45° to the planes defined by the
principal axes of stress / strain (use rotation to find these)
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Not only do we sometimes want to change the orientation of
the axes we use to describe a body, but we find it more
convenient to describe a body in a coordinate system other
than rectangular cartesian. Thus, consider...

Other Coordinate Systems

The “easiest” case IS
Cylindrical (or Polar in 2-D) coordinates

Figure 7.3 Loaded disk

Figure 7.4 Stress around a hole
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Figure 7.5  Shaft

Define the point p by a different set of coordinates other than y,, v,, Y

Figure7.6  Polar coordinate representation

Volume = rd¢

Unit7-p.9
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Use 0, r, z where:

y, = I cosf
Yy, = rsinf
Y3 = ¢

are the “mapping” functions
Now the way we describe stresses, etc. change...
--> Differential element is now different

Rectanqular cartesian

Figure7.7  Differential element in rectangular cartesian system

Volume = dy, dy i
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Figure7.8  Differential element in cylindrical system

Volume = rd6drdz

Generally:

dy,-->dr
dy, --> rdo
dy,;-->dz

Paul A. Lagace © 2001

(get from “mapping” functions)
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--> stresses follow same rules:
Omn

l L» direction

face

but now we deal with r, 6, z faces and directions

Figure7.9 Representation of stresses on rectangular cartesian and
cylindrical differential elements
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equilibrium considerations (or your “mapping” functions
on equations in rectangular cartesian coordinates) yield:

Paul A. Lagace © 2001 Unit 7 - p. 12



MIT - 16.20 Fall, 2002

Equilibrium Equations (in cylindrical coordinates)
re IOy " !— IO g " 00y " O — Oogp +fr -0

or r o0 0Z r

p: %m0 +!'(9066 +80—29+2(jlre +f =0
or r 00 0Z r
ar r 00 0Z r

Body forces =f,, f,, f,

can do a similar manipulation for the
Strain - Displacement Equations

rr ar
1 dug u,
€gp = - — + —
00 r o0 r
dUs
€ - >
2% 0z
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(engineering shear strains)

€g = — + - — — —
o or r 90 r
1 dug dUg
€z = ~ 4 P
r 00 0Z
2f 0z ar

Stress - Strain Equations become, however, more complicated and not
easy to “map” into another coordinate systems.

Why? Unless the material is isotropic, the properties change with
direction (if the material principal axes are rectangular orthogonal).

~

Emnpq = grﬁr gﬁs gﬁt écﬁu Erstu
So, for cylindrical coordinates:

Emnpq (8)
a function of 6
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Think of it this way:

In cylindrical (polar 2-D) coordinates, we have rotated a “local
rectangular cartesian system”. So we use the E.,,,, transformation with
the angle 6 to find the elasticity tensor values and then the “local”

engineering constants.
Recall / note: a material that is orthotropic
may pick up additional coupling terms in this

rotation and “appear” anisotropic in that local
coordinate system.

In the isotropic case, can write:

€ = E [Orr - V(Oee + Ozz)]
1

€0 = E [Oee - V(Orr + 022)]
1

€2z = E [Ozz - V(Orr + 066)]
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€g = E Org
201 + v

€oz = ( E ) O,
211 + v

€qr = ( E ) Oy

More generally, we can express transformation to any...

General Curvilinear Coordinates
(including locally non-rectangular Cartesian systems)

functional forms:

Fr (Yo Y2, ¥3) = €

Fo (Y1, Y2, ¥3) =

Fs (Y1 Y2, ¥3) = €
Use these to “transform” governing equations from basic rectangular
case

Unit 7 - p. 16
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For cylindrical case:

E=1r
n =0
C =12

actual “mapping” functions:

Fi (Yo Y2, ¥Y3) = Y2 + Y5

Fo (Y1 Y2u ¥3) = tan™(y, /y,)

Fs (Yo V2. ¥Y3) = Y3
Other cases

Let’s next consider some general solution approaches
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