
MIT - 16.20 Fall, 2002 

Unit 7

Transformations and Other


Coordinate Systems

Readings:

R 2-4, 2-5, 2-7, 2-9

BMP 5.6, 5.7, 5.14, 6.4, 6.8, 6.9, 6.11

T & G 13, Ch. 7 (74 - 83)


On “other” coordinate systems:

T & G 27, 54, 55, 60, 61


Paul A. Lagace, Ph.D.

Professor of Aeronautics & Astronautics


and Engineering Systems


Paul A. Lagace © 2001 



MIT - 16.20 Fall, 2002 

As we’ve previously noted, we may often want to describe a 
structure in various axis systems. This involves… 

Transformations 

(Axis, Deflection, Stress, Strain, Elasticity Tensors) 

e.g., loading axes <--> material principal axis 

Figure 7.1  Unidirectional Composite with Fibers at an Angle 

fibers 

Know stresses along loading axes, but want to know stresses 
(or whatever) in axis system referenced to the fiber. 
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Problem: get expressions for (whatever) in one axis system in terms of 
(whatever) in another axis system 

(Review from Unified) 

Recall: nothing is inherently 
changing, we just describe a body 
from a different reference. 

Use ~ (tilde) to indicate transformed axis system. 

Figure 7.2  General rotation of 3-D rectangular axis system 

(still rectangular cartesian) 
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“Define” this transformation via direction cosines 

~ 
~lmn = cosine of angle from ym to yn 

Notes: by convention, angle is measured positive 
counterclockwise (+ CCW) 

(not needed for cosine) 

~ ~ since cos is an even functionlmn = lnm 
cos (θ) = cos (-θ) 

(reverse direction) 

~ ~But lmn ≠ lmn 

angle differs by 2θ! 

The order of a tensor governs the transformation needed. An nth order 
tensor requires an nth order transformation (can prove by showing link of 
order of tensor to axis system via governing equations). 
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Thus: 
Quantity Transformation Equation 

˜ Stress σmn = l	mp lnq σ pq˜ ˜ 

Strain ε̃ = l ̃  l ̃ εmn mp nq pq 

Axis x̃m = l	mp xp˜ 

Displacement ũm = l	mp up˜ 

Fall, 2002 

Physical Basis 

equilibrium 

geometry 

geometry 

geometry 

Elasticity Tensor Ẽmnpq = l lns l pt lqu Erstu Hooke’s lawm̃r ˜ ˜ ˜ 

In many cases, we deal with 2-D cases 

(replace the latin subscripts by greek subscripts) 

e.g., σ̃ αβ = l l  ˜αθ βτ 
σθτ˜ 

(These are written out for 2-D in the handout). 
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An important way to illustrate transformation of stress and strain in 2-D is 
via Mohr’s circle (recall from Unified). This was actually used B.C. (before 
calculators). It is a geometrical representation of the transformation. 

(See handout). 
(you will get to work with this in a problem set). 

Also recall… 

(Three) Important Aspects Associated with Stress/Strain Transformations 

1.	 Principal Stresses / Strains (Axes): there is a set of axes into 
which any state of stress / strain can be resolved such that 
there are no shear stresses / strains 

--> σij depend on applied loads

--> εij depend on applied loads and material response


Thus, note: 

For general materials… 

axes for principal strain ≠ axes for principal stress
Generally: 

(have nothing to do with) material principal axes ≠ principal 
axes of stress / strain 
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Find via roots of equation: 

σ11 − τ σ12 σ13 

σ12 σ22 − τ σ23 = 0 

σ13 σ23 σ33 − τ 

eigenvalues: σI, σII, σIII 

(same for strain) 

2.	 Invariants: certain combinations of stresses / strains are 
invariant with respect to the axis system. 

Most important: Σ (extensional stresses / strains) = Invariant 
very useful in back-of-envelope / “quick check” calculations 

3. Extreme shear stresses / strains:  (in 3-D) there are three planes 
along which the shear stresses / strains are maximized. 
These values are often used in failure analysis (recall Tresca 
condition from Unified). 

These planes are oriented at 45° to the planes defined by the 
principal axes of stress / strain (use rotation to find these) 
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Not only do we sometimes want to change the orientation of 
the axes we use to describe a body, but we find it more 
convenient to describe a body in a coordinate system other 
than rectangular cartesian. Thus, consider… 

Other Coordinate Systems 

The “easiest” case is 

Cylindrical (or Polar in 2-D) coordinates 

Figure 7.3  Loaded disk 

Figure 7.4  Stress around a hole 
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Figure 7.5  Shaft 

Define the point p by a different set of coordinates other than y1, y2, y3 

Figure 7.6  Polar coordinate representation 

Volume = rdθdrdz 
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Use θ, r, z where: 
y1 = r cos θ 

y2 = r sinθ 

y3 = z 
are the “mapping” functions 

Now the way we describe stresses, etc. change… 

--> Differential element is now different 

Rectangular cartesian 

Figure 7.7  Differential element in rectangular cartesian system 

Volume = dy1 dy2 dy3 
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Cylindrical 

Figure 7.8  Differential element in cylindrical system 

Volume = rdθdrdz 

Generally: 

dy1 --> dr 
dy2 --> rdθ 
dy3 --> dz (get from “mapping” functions) 
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--> stresses follow same rules: 

σmn 

direction 

face 

but now we deal with r, θ, z faces and directions 

Figure 7.9 Representation of stresses on rectangular cartesian and 
cylindrical differential elements 

equilibrium considerations (or your “mapping” functions 
on equations in rectangular cartesian coordinates) yield: 
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Equilibrium Equations (in cylindrical coordinates) 

r : 
∂σrr + 

1 ∂σθr + 
∂σzr + 

σrr − σθθ + fr = 0 
∂r r ∂θ ∂z r 

∂σrθ + 
1 ∂σθθ + 

∂σzθ + 
2σrθ + fθ = 0θ : 

∂r r ∂θ ∂z r 

z : 
∂σrz + 

1 ∂σθz + 
∂σzz + 

σrz + fz = 0 
∂r r ∂θ ∂z r 

Body forces = fr, fθ, fz 

can do a similar manipulation for the 

Strain - Displacement Equations 
∂u

ε = r 
rr ∂r 

εθθ =	
1 ∂uθ + 

ur 

r ∂θ r 

∂u3ε = zz ∂z 
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(engineering shear strains) 

εrθ = 
∂uθ + 

1 ∂ur − 
uθ 

∂r r ∂θ r 

εθz =	
1 ∂u3 + 

∂uθ 

r ∂θ ∂z 

εzr =	
∂ur + 

∂u3 

∂z ∂r 

Stress - Strain Equations become, however, more complicated and not 
easy to “map” into another coordinate systems. 

Why? Unless the material is isotropic, the properties change with 
direction (if the material principal axes are rectangular orthogonal). 

Ẽmnpq = l l ˜ ˜ qu Erstum̃r ns lpt l ̃

So, for cylindrical coordinates: 

Emnpq (θ) 

a function of θ 
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Think of it this way: 

In cylindrical (polar 2-D) coordinates, we have rotated a “local 
rectangular cartesian system”.  So we use the Ẽ 

mnpq transformation with 
the angle θ to find the elasticity tensor values and then the “local” 
engineering constants. 

Recall / note:  a material that is orthotropic 
may pick up additional coupling terms in this 
rotation and “appear” anisotropic in that local 
coordinate system. 

In the isotropic case, can write: 

1
εrr = 

E 
[σrr − ν(σθθ + σzz )] 

1
εθθ = 

E 
[σθθ − ν(σrr + σzz )] 

1
εzz = 

E 
[σzz − ν(σrr + σθθ )] 
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2 1  + ν) 
σrθεrθ =

( 
E 

(
εθz = 

2 1  + ν) 
σθzE 

2 1  + ν) 
σε =

( 
zr zrE 

More generally, we can express transformation to any… 

General Curvilinear Coordinates 

(including locally non-rectangular Cartesian systems) 

functional forms: 

F y11 ( , y2, y3) = ξ 

2 ( ,F y y2, y3) = η1 

3 ( ,F y y2, y3) = ζ1 

Use these to “transform” governing equations from basic rectangular 
case 
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For cylindrical case: 

ξ = r 

η = θ 

ζ = z 

actual “mapping” functions: 

F y11 ( , y2, y3) = y2 
2y1 

2 + 

2 ( ,F y y2, y3) = tan-1 (y2 / y1)1 

F y y2, y3) = y33 ( ,1 

Other cases 

Let’s next consider some general solution approaches 
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