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There are many structural configurations where we do not 
have to deal with the full 3-D case. 

• First let’s consider the models 

•	 Let’s then see under what conditions we can 
apply them 

A. Plane Stress 

This deals with stretching and shearing of thin slabs. 
Figure 6.1  Representation of Generic Thin Slab 
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The body has dimensions such that 
h << a, b 

(Key:  where are limits to “<<“??? We’ll 
consider later) 

Thus, the plate is thin enough such that there is no variation of 
displacement (and temperature) with respect to y3 (z). 

Furthermore, stresses in the z-direction are zero (small order of 
magnitude). 

Figure 6.2 Representation of Cross-Section of Thin Slab 
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Thus, we assume: 
σzz = 0 

σyz = 0 

σxz = 0 
∂ 

= 0 
∂z 

So the equations of elasticity reduce to: 

Equilibrium 

∂σ11 + 
∂σ21 + f1 = 0 (1)

∂y1 ∂y2 

∂σ12 + 
∂σ22 + f2 = 0 (2)

∂y1 ∂y2 

(3rd equation is an identity)	 0 = 0 
(f3 = 0) 

In general: ∂σβα + fα = 0 
∂yβ 
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Stress-Strain (fully anisotropic) 

Primary (in-plane) strains 

1
ε1 = 

E1 
[σ1 − ν12σ 2 − η16 σ6 ] (3) 

1
ε 2 = 

E2 
[− ν21 σ1 + σ 2 − η26 σ6 ] (4) 

1
ε6 = 

G6 
[−η61 σ1 − η62σ 2 + σ6 ] (5) 

Invert to get: 

*σαβ = Eαβσγ εσγ 

Secondary (out-of-plane) strains 
⇒ (they exist, but they are not a primary part of the problem) 

1
ε3 = 

E3 
[− ν31σ1 − ν32σ2 − η36σ6 ]
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1
ε4 = 

G4 
[− η41 σ1 − η42 σ2 − η46σ6 ] 

1
ε5 = 

G5 
[−η51 σ1 − η52σ2 − η56σ6 ] 

Note: can reduce these for orthotropic, isotropic 
(etc.) as before. 

Strain - Displacement 

Primary 

ε11 =	
∂u1 (6)
∂y1 

ε22 =	
∂u2 (7)
∂y2 

ε12 =	
1 

 
∂u1 + 

∂u2 

 

(8)
2  ∂y2 ∂y1  
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Secondary 

ε13 = 
1 

 
∂u1 + 

∂u3 


2  ∂y3 ∂y1 


ε23 = 
1 


∂u2 + 

∂u3  
2  ∂y3 ∂y2 

ε33 = 
∂u3 

∂y3 

Note: that for an orthotropic material 

(ε23) (ε13) 
ε4 = ε5 = 0 (due to stress-strain relations) 
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This further implies from above 
∂

(since = 0)
∂y3 

No in-plane variation 
∂u3 = 0 
∂yα 

but this is not exactly true 

⇒ INCONSISTENCY 

Why? This is an idealized model and thus an approximation. There 
are, in actuality, triaxial (σzz, etc.) stresses that we ignore here as 
being small relative to the in-plane stresses! 

(we will return to try to define “small”) 

Final note: for an orthotropic material, write the tensorial 
stress-strain equation as: 

2-D plane stress 
σαβ = εσγ ( ,  ,α β, σ, γ = 1 2)αβσγ 

∗E 
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There is not a 1-to-1 correspondence between the 3-D Emnpq and 
the 2-D E* 

αβσγ. The effect of ε33 must be incorporated since ε33 does 
not appear in these equations by using the (σ33 = 0) equation. 

This gives: 

ε33 = f(εαβ) 

Also, particularly in composites, another “notation” will be used in 
the case of plane stress in place of engineering notation: 

subscript x = 1 = L (longitudinal)…along major axis 
change y = 2 = T (transverse)…along minor axis 

The other important “extreme” model is… 

B. Plane Strain 

This deals with long prismatic bodies: 
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Figure 6.3 Representation of Long Prismatic Body 

Dimension in z - direction is much, much larger than in 
the x and y directions 

L >> x, y 
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(Key again: where are limits to “>>”??? … we’ll 
consider later) 

Since the body is basically “infinite” along z, the important loads are in the 
x - y plane (none in z) and do not change with z: 

∂ ∂ 
= = 0 

∂y3 ∂z 

This implies there is no gradient in displacement along z, so (excluding 
rigid body movement): 

u3 = w = 0 

Equations of elasticity become: 

Equilibrium: 
Primary 

∂σ11 + 
∂σ21 + f1 = 0 (1)

∂y1 ∂y2 

∂σ12 + 
∂σ22 + f2 = 0 (2)

∂y1 ∂y2 
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Secondary 
∂σ13 + 

∂σ23 + f3 = 0 
∂y1 ∂y2 

σ13 and σ23 exist but do not enter into primary 
consideration 

Strain - Displacement 

ε11 =	
∂u1 (3)
∂y1 

ε22 =	
∂u2 (4)
∂y2 

ε12 =	
1 

 
∂u1 + 

∂u2 

 

(5)
2  ∂y2 ∂y1  

Assumptions  
∂ 

= 0, w = 0
 give: 

 ∂y3  

ε13 = ε23 = ε33 = 0 
(Plane strain) 
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Stress - Strain 

(Do a similar procedure as in plane stress) 

3 Primary 
σ11 = ... (6) 

σ22 = ... (7) 

σ12 = ... (8) 

Secondary 

σ13 = 0 

σ23 = 0 
orthotropic (≠ 0 for anisotropic) 

σ33 ≠ 0 

INCONSISTENCY: No load along z, 
yet σ33 (σzz) is non zero. 

Why? Once again, this is an idealization. Triaxial strains (ε 33) 
actually arise. 

You eliminate σ33 from the equation set by expressing it in terms of 
σαβ via (σ33) stress-strain equation. 
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SUMMARY Plane Stress Plane Strain 

Eliminate σ33 from eq. 
Set by using σ33 σ - ε 
eq. and expressing σ33 

in terms of εαβ 

Eliminate ε33 from eq. set 
by using σ33 = 0 σ - ε eq. 
and expressing ε33 in 
terms of εαβ 

Note: 

σ33ε33, u3Secondary 
Variable(s): 

εαβ, σαβ, uαεαβ, σαβ, uαPrimary 
Variables: 

εi3 = 0σi3 = 0Resulting 
Assumptions: 

σαβ only 

∂/∂y3 = 0 

σ33 << σαβLoading: 

length (y3) >> in-plane 
dimensions (y1, y2) 

thickness (y3) << in-plane 
dimensions (y1, y2) 

Geometry: 
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Examples 

Plane Stress:


Figure 6.4  Pressure vessel (fuselage, space habitat) Skin


in order of 70 MPa 
(10 ksi) 

po ≈ 70 kPa (~ 10 psi for living environment) 
⇒ σzz << σxx, σyy, σxy 
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Plane Strain: 

Figure 6.5  Dams 

water 
pressure 

Figure 6.6  Solid Propellant Rockets 

high internal pressure 
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but…when do these apply??? 

Depends on… 
• loading 

• geometry 

• material and its response 

• issues of scale 
• how “good” do I need the answer


• what are we looking for (deflection, failure, etc.)


We’ve talked about the first two, let’s look a little at each of the last three: 

--> Material and its response 
•	 Elastic response and coupling changes importance / 

magnitude of “primary” / “secondary” factors 
(Key: are “primary” dominating the response?) 

--> Issues of scale 
• What am I using the answer for? at what level? 

• Example: standing on table 

--overall deflection or reactions in legs are not 
dependent on way I stand (tip toe or flat foot) 
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⇒ model of top of table as plate in 
bending is sufficient 

--stresses under my foot very sensitive to 
specifics 

(if table top is foam, the way I stand 
will determine whether or not I 

crush the foam) 

--> How “good” do I need the answer? 

•	 In preliminary design, need “ballpark” estimate; in final 
design, need “exact” numbers 

•	 Example: as thickness increases when is a plate no 
longer in plane stress 
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Figure 6.7  Representation of the “continuum” from plane stress to 
plane strain 

very thick 

a continuum very thin 
(plane stress) 

(plane strain) 

No line(s) of demarkation. Numbers 
approach idealizations but never get 
to it. 

Must use engineering judgment 

AND 

Clearly identify key assumptions in model and resulting limitations 
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