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We do not characterize materials by their E, .. The E ., are

useful in doing transformations, manipulations, etc.

We characterize materials by their
“ENGINEERING CONSTANTS”
(or, Elastic Constants)
(what we can physically measure)

There are 5 types

1. Longitudinal (Young’'s) (Extensional) Modulus: relates
extensional strain in the direction of loading to stress in the
direction of loading.

(3 of these)

2. Poisson’s Ratio: relates extensional strain in the loading
direction to extensional strain in another direction.
(6 of these...only 3 are independent)
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3. Shear Modulus: relates shear strain in the plane of shear
loading to that shear stress.

(3 of these)

4, Coefficient of Mutual Influence: relates shear strain due to shear
stress in that plane to extensional strain or, relates extensional
strain due to extensional stress to shear strain.

(up to 18 of these)

5. Chentsov Coefficient: relates shear strain due to shear stress in
that plane to shear strain in another plane.
(6 of these)

Let’s be more specific:

1. Longitudinal Modulus
1) E,;orE, orE; orE, contribution of ¢,, t0o 0y,

2) EjxorE, orE,orE; contribution of g,, t0 0,
3) EgzorE,, or E;or E,: contribution of e55 t0 04,
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2. Poisson’s Ratios

Paul A. Lagace © 2001

In general:

1)
2)
3)
4)
S)
6)

Fall, 2002

_ 9mm  dueto Omm applied only
gmm
(no summation on m)

Emm

(negative ratios)

vy, O v,0 (negative of) ratio of ¢,, to &;, due to oy,
Vi3 OF v,,. (negative of) ratio of €55 to €., due to o,
Vo3 OF vy,0 (negative of) ratio of &;; to ¢,, due to o,,
vy O vy, (negative of) ratio of ¢, to ¢,, due to o,,
Vg, OF v,.. (negative of) ratio of €;; t0 €55 due to oy,
vz, Or v, (negative of) ratio of ¢,, t0 €35 due to 0,

In general:

Important: v, = v

- _%mm due to o, applied only

Snn

Vnm
(for n = m)

mn
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However, these are not all independent. There are relations
known as “reciprocity relations” (3 of them)

Vo B = v By
V3 Eq1 = Vi3 Ea3

Vap Epp = vy3 Exg

3. Shear Moduli
1) Gy, or G, or Gg: contribution of (2)e;, to oy,

2) GporG,, or G contribution of (2)e,5 t0 0,3
3) Gy 0r G, or G, contribution of (2)ey; 10 0,3

In general: G, = 9mn_ due to o,,, applied only

€mn
/S

factor of 2 here since it relates physical quantities

shear stress Tmn
) = Gmn =
shear deformation (angular charge) Y mn
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4. Coefficients of Mutual Influence (negative ratios)

(also known as “coupling coefficients”)

Note: need to use contracted notation here;
N (negative of) ratio of (2)e,, to €,, due to oy,

1)
2)
3)
4)
11)
12)

Ne1- (negative of) ratio of ¢,, to (2)e,, due to oy,

N26
Ne2
N34
M43

() Mze (7) M4 (9) M4
(6) Mes (8) Ma (10) My,
(13) nys (15) s (17) nzs
(14) ns, (16) ns, (18) ns3

5. Chentsov Coefficients (negative ratios)

1)
2)
3)
4)
S)
6)

Paul A. Lagace © 2001

Nae:
Nea:
Nys:
Ns4:
Nse:
Nes:

(negative of) ratio of (2)¢,, to (2)¢,; due to o,
(negative of) ratio of (2)¢,5 to (2)¢,, due to oy,
(negative of) ratio of (2)e,5 to (2)¢,; due to o,
(negative of) ratio of (2)¢,5 to (2)e,5; due to o,
(negative of) ratio of (2)¢,, to (2)e,; due to o,
(negative of) ratio of (2)e,5 to (2)¢,, due to o,

Fall, 2002
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Again, since these are physical ratios, engineering
shear strain factor of 2 is used.

Again, these are not all independent. Just as for the
Poisson’s ratios, there are reciprocity relations. These
Involve the longitudinal and shear moduli (since these
couple extensional and shear or shear to shear). There are

12 of them:
Ne1 E1 = M1 Ge Ns1 E1 = Mis5 Gs N BE1 = M1a Gy
N2 Ez = Mpp Gg Ns2 Bz = M5 Gs Nap By = Mps Gy
N3 Ez = M3 Gg Ns3 E3z = M35 Gs N3 E3 = M3y Gy

Paul A. Lagace © 2001
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N4s Gg
Nys Gs
Nse Ge

In general:

MNnm Em = Nmn Gn
(m =1, 2, 3)
(n = 4,5, 6)

and

Nes G4
Nsq Gy
Nes Gs

In general:

Nnm Gm = Nmn Gn

(m = 4,5, 6)
(m = n)

Fall, 2002
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This gives 21 independent (at most)
engineering constants:

Total 3 E, 6v,, 3G, 18n,, 6n,,

n

| | | | |
Indp’t.: 3 3 3 9 3 =21

--> Now that we have defined the terms, we wish to write the
“engineering stress-strain equations”

Recall compliances:

€mn = Smnpq Opq

and consider only the first equation:
€11 = S1111 011 + S1122 O22 + S1133 O3z
+ 231123 Op3 + 251113 013 + 23541412 Opp
(we’ll have to use contracted notation, so...)
€1 = 51107 + S92 0y + S1303 + S14 04 + Si5 05 + Sy O
(Note: 2’s disappear!)
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Consider each of the compliance terms separately:

Case 1: Only o, applied

€= Sy; Oy
and we know
o
E, = ! duetoo,only
€1
1

== Sll =
1
Case 2: Only o,, applied

€, = Sy 0,

We need two steps here.
The direct relation to o, is from e.:

)

E, = —% duetoo, onl
2 2
€2
and we know .
v, = -1 dueto o, only
€2
o E
= 2 = - "2 duetoo, only
€1 Vo1

Paul A. Lagace © 2001 Unit5-p. 10



MIT - 16.20

Thus:
Vo1

Sy, = “E. (due to o, only)

2

Fall, 2002

--> to make this a bit simpler (for later purposes), we recall the reciprocity

relation:
vio E; = vy By

Case 3: Only o, applied
In a similar manner we get:

V13
Si3 = ——

E,

Case 4: Only o, (0,3) applied

€ = S14 04

Again, two steps are needed.

Paul A. Lagace © 2001
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First the direct relation of ¢, to o,:

G, = %4 dueto o, only

84\
This is engineering strain!

and then:
Ny = _ "1 dueto o, only
€4
_ 9 _ _Gu
€1 Na1
= S, = —% due to o, only
4
Again, we use a reciprocity relation to get:
Max _ Mua
G, E,
= Sy = M4 gue to o, only

1
We do the same for Case 5 of only o applied, and
Case 6 of only o, applied to

Paul A. Lagace © 2001
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get:

N15
Si5 = ——
E,
and
N16
Sip = ——
E,

With all this we finally get:

1
E [01 — V1202 — V1303 — M1404 — MN1505 — T]1606]
1

AN

81=

we used the reciprocity relations so
we could “pull out” this common

factor.
We can do this for all the other cases.
In general we write:
1 6
€n = “E. Y Vam Om
n m=1

Note: v, =-1
If we let n's be v's

Paul A. Lagace © 2001 Unit5-p. 13
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“Engineering” Stress-Strain Equations
General Form

1
€ = E [01 — V1202 — V1303 — N1404 — M505 - T11606]
1
1
€y = E. [— V2101 + O = V303 = MpsO04 — MosO5 — T]2606]
2
1
€3 = —— [—V31 01 — V320p + O3 — NM3404 — M3505 — 1flsa%]
3
1
Va4 = €4 = G. [—7]41 O1 = M4g202 — M4303 + O4 = MysOs — n4606]
4
1 -
Y5 = €5 = G. | ~Ns51 01 — M5202 — NMs5303 — MgyOy4 + O — n5606]
5
1 -
Y6 = €6 = G. |~ N61 01 — NMe202 — Me303 — MesO4 — MesO5 + 06]
6

Paul A. Lagace © 2001 Unit5-p. 14
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In general:

L3
€n = —= Vam Om
En m=1

Note: v, =-1
n's --> v's

We have developed these for a fully anisotropic material. Again,
there are currently no useful engineering materials of this nature.
Thus, these would need to be reduced accordingly.

Paul A. Lagace © 2001 Unit5-p. 15



MIT - 16.20 Fall, 2002

Orthotropic Case:

In material principal axes, there is no coupling between extension and
shear and no coupling between planes of shear, so:

allm,,=0
Thus, only the following constants remain:
E, Vi2: V21 Gy,
E, Vi3s V31 Gz
E; Va3: V32 Gyg
S v
3 + 3 + 3 =9

(same as E

mnpg, REtter bet)

Paul A. Lagace © 2001 Unit5-p. 16
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So the six equations become:

Paul A. Lagace © 2001

81=

1
E,
1
E,
1

[01 — V1202 - V1303]
[‘ V2101 + Oy - V2303]

—— [—V31 01 — V320, + 03]

Fall, 2002
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matrix form:

Paul A. Lagace © 2001

_V12 _V13 0 0 0
E, E,
i _ Vo3 0 0 0
E, E,
R T R
E; E,;
0 0 i 0 0
Gy
0 0 0 i 0
Gy3
0 0 0 0 i
GlZ_
S

~

Fall, 2002

this is, in fact, the compliance matrix

Unit5-p. 18
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Thus:
« If we know the engineering constants (through tests -- this is

upcoming)
* Relate engineering constants to S,

e Get Emngq by i_nversion of Sinpg
get relationships between E,, .

matrix (combine steps to directly
and the engineering constants)

|sotropic Case

As we noted in the last unit, as we get to materials with less elastic
constants (< 9) than an orthotropic material, we no longer have any more
zero terms in the elasticity or compliance matrix, but more nonzero terms

are related.

For the isotropic case:
 All extensional moduli are the same:
E,=E,=E;=E
 All Poisson’s ratios are the same:
Vi2 = V21 =V13 = V31 = V23 = V32 =V
 All shear moduli are the same:
G,=G;=G,=G

Paul A. Lagace © 2001 Unit5-p. 19
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 And, there is a relationship between E, v and G (from Unified):

E
G -
21 + v)

Thus, there are only 2 independent
constants.

We now have all the relationships to do the manipulations,
but we need to measure the basic properties. We must
therefore talk about...

Testing

Testing is used for a variety of purposes.

Depending on the purpose, the technique and “care” will vary. The
“fidelity” needed in the testing depends on the use.

Basically, apply a load (stress) condition and measure appropriate
responses:

Paul A. Lagace © 2001
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e Strain
* Displacements
o Failure
(or maybe vice versa)

Concerns in test specimens
 Boundary conditions and introduction of load

e Stress concentrations
 Achievement of desired stress state

 Cost and ease of use also important (again, depends on
use of test)

Many of these concerns will depend on the material / configuration and
load condition. This generally involves issues of scale.

“Properties” of a material / structure depends on the “scale” at which you
look at it.
Scale = level of homogenization (average behavior over a certain
size)

Paul A. Lagace © 2001 Unit5-p. 21
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Example 1. Atoms make up a material
Figure5.1 Representation of atomic bonding as springs

e —_—
The behavior of the “materials” is some combination of the

atoms and their bonds.

Example 2. Composite
Figure5.2 Representation of unidirectional composite

-
fibers in a matrix

Fibers and matrix respond differently. “Average” their
response to get “composite” properties

Paul A. Lagace © 2001 Unit5-p. 22
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= Must look at responses at length of
several fiber diameters

Example 3. A Truss
Figure5.3 Representation of a generic truss

D A —_—
A B

. i -

Each truss member responds in a certain way, but we can
characterize the truss behavior on a large scale by looking
at the displacement between A and B (A/) and get a “truss

stiffness”.

Final Example: put all of these together

e Truss
« Members are composites
 Composites have fibers and matrix

* Fibers and matrix are composed of atoms

=> a continuum!
Paul A. Lagace © 2001 Unit5-p. 23
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Any material is really a structure. We are making an engineering
approximation by characterizing it at a certain level.

=> that is the limit / assumption on “material
properties” and the tests we use to measure
them.
(so elastic constants are an
engineering representation of
“micromechanical” behavior)

Thus, let’s keep in mind such issues of scale as we consider test
methods. Must measure at or above pertinent scale of homogenization /
averaging.

There are many different types of tests, but in dealing with elastic
constants, there are 3 basic load conditions (tension, compression,
shear)

The test specimen will depend on the material and the load condition.
1. Tension (easiest to do)

Paul A. Lagace © 2001 Unit5-p. 24
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Figure54 Tension specimens

T ! T

l I l

Tapered Dogbone Straight-edged coupon
Bar Specimen (composites) ...stress
concentration problem

2. Compression
Similar specimens can be used, but must beware of buckling
(global and local instabilities)

Possibility of local reinforcement to prevent buckling.

Paul A. Lagace © 2001 Unit5-p. 25
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3. Shear
Very hard to apply pure shear.

Figure55 Possible shear specimens

\

O ) ) Tube
v

}/// / osipesc

(beam theory shows area of
pure shear -- test section)

Refer to: ASTM (American Society for Testing
and Materials) Annual Book of Standards

Voluntary test standards are contained there.

Paul A. Lagace © 2001 Unit5-p. 26
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=> what to do with test data
Test data must be “reduced” to give the engineering

constants.
Figure5.6 Typical stress-strain data (for ductile material)
O: A
x
P

bé‘
 The engineering constants are defined (somewhat
arbitrary) as various parts of this curve. Generally within

the “initial linear region”.

o Often use linear regression

Paul A. Lagace © 2001
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Key
= Stress-strain relations with

engineering constants attained in
this manner are valid only in the
linear region.

Thus, one must report:
* slope (engineering constant)

* region of applicability
Note: we have not dealt with temperature

effects. We will consider this later.

Also note: strength / failure properties are

much harder to measure.
(recall Unified: average behavior vs. local /

weakest link)

Unit5-p. 28
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We have now developed the general 3-D stress-strain relations. But we
often deal with a problem where we can simplify (model as) to a 2-D
system. Two important cases to next consider:

Plane Stress

Plane Strain

Paul A. Lagace © 2001 Unit 5-p. 29



