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We do not characterize materials by their Emnpq. The Emnpq are 
useful in doing transformations, manipulations, etc. 

We characterize materials by their 
“ENGINEERING CONSTANTS” 

(or, Elastic Constants) 
(what we can physically measure) 

There are 5 types 

1.	 Longitudinal (Young’s) (Extensional) Modulus: relates 
extensional strain in the direction of loading to stress in the 
direction of loading. 

(3 of these) 

2. Poisson’s Ratio: relates extensional strain in the loading 
direction to extensional strain in another direction. 

(6 of these…only 3 are independent) 
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3. Shear Modulus: relates shear strain in the plane of shear 
loading to that shear stress. 

(3 of these) 

4.	 Coefficient of Mutual Influence: relates shear strain due to shear 
stress in that plane to extensional strain or, relates extensional 
strain due to extensional stress to shear strain. 

(up to 18 of these) 

5. Chentsov Coefficient: relates shear strain due to shear stress in 
that plane to shear strain in another plane. 

(6 of these) 

Let’s be more specific: 

1. Longitudinal Modulus 
1) E11 or Exx or E1 or Ex: contribution of ε11 to σ11 

2) E22 or Eyy or E2 or Ey: contribution of ε22 to σ22 

3) E33 or Ezz or E3 or Ez: contribution of ε33 to σ33 
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In general: Emm =	
σmm due to σmm applied only 
εmm 

(no summation on m) 

2. Poisson’s Ratios  (negative ratios) 
1) ν12 or νxy: (negative of) ratio of ε22 to ε11 due to σ11 

2) ν13 or νxz: (negative of) ratio of ε33 to ε11 due to σ11 

3) ν23 or νyz: (negative of) ratio of ε33 to ε22 due to σ22 

4) ν21 or νyx: (negative of) ratio of ε11 to ε22 due to σ22 

5) ν31 or νzx: (negative of) ratio of ε11 to ε33 due to σ33 

6) ν32 or νzy: (negative of) ratio of ε22 to ε33 due to σ33 

In general: νnm = −
εmm due to σnn applied only 
εnn 

(for n ≠ m) 

Important: νnm ≠ νmn 
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However, these are not all independent. There are relations 
known as “reciprocity relations” (3 of them) 

ν21 E11 = ν12 E22 

ν31 E11 = ν13 E33 

ν32 E22 = ν23 E33 

3. Shear Moduli 
1) G12 or Gxy or G6: contribution of (2)ε12 to σ12 

2) G13 or Gxz or G5: contribution of (2)ε13 to σ13 

3) G23 or Gyz or G4: contribution of (2)ε23 to σ23 

In general: Gmn = 
σmn due to σmn applied only
2εmn 

factor of 2 here since it relates physical quantities 

shear stress τmn⇒ Gmn = 
shear deformation (angular charge) γ mn 
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4. Coefficients of Mutual Influence  (negative ratios) 
(also known as “coupling coefficients”) 

Note: need to use contracted notation here: 
1) η16: (negative of) ratio of (2)ε12 to ε11 due to σ11 

2) η61: (negative of) ratio of ε11 to (2)ε12 due to σ12 

3) η26 (5) η36 (7) η14 (9) η24 

4) η62 (6) η63 (8) η41  (10) η42 

11) η34 (13) η15 (15) η25 (17) η35 

12) η43 (14) η51 (16) η52 (18) η53 

5. Chentsov Coefficients  (negative ratios) 
1) η46: (negative of) ratio of (2)ε12 to (2)ε23 due to σ23 

2) η64: (negative of) ratio of (2)ε23 to (2)ε12 due to σ12 

3) η45: (negative of) ratio of (2)ε13 to (2)ε23 due to σ23 

4) η54: (negative of) ratio of (2)ε23 to (2)ε13 due to σ13 

5) η56: (negative of) ratio of (2)ε12 to (2)ε13 due to σ13 

6) η65: (negative of) ratio of (2)ε13 to (2)ε12 due to σ12 
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Again, since these are physical ratios, engineering 
shear strain factor of 2 is used. 

Again, these are not all independent. Just as for the 
Poisson’s ratios, there are reciprocity relations. These 
involve the longitudinal and shear moduli (since these 
couple extensional and shear or shear to shear). There are 
12 of them: 

η61 E1 = η16 G6 η51 E1 = η15 G5 η41 E1 = η14 G4 

η62 E2 = η26 G6 η52 E2 = η25 G5 η42 E2 = η24 G4 

η63 E3 = η36 G6 η53 E3 = η35 G5 η43 E3 = η34 G4 
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in general: 

ηnm Em =	 ηmn Gn 

(m =  1,  2,  3) no sum 

(n =  4,  5,  6) 

and 

η46 G6 = η64 G4 

η45 G5 = η54 G4 

η56 G6 = η65 G5 

in general: 

ηnm Gm = ηmn Gn 

(m =  4,  5,  6) no sum 

(m ≠ n) 
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This gives 21 independent (at most) 
engineering constants: 

Total 3 En 6νnm 3 Gm 18ηnm 6 ηnm 

↓ ↓ ↓ ↓ ↓ 

Indp’t.: 3 3 3 9 3 = 21 

--> Now that we have defined the terms, we wish to write the 
“engineering stress-strain equations” 

Recall compliances: 

εmn = Smnpq σpq 

and consider only the first equation: 

ε11 = S1111 σ11 

+ 2S1123 

ε1 = S11 σ1 + 

Paul A. Lagace © 2001 

+ S1122 σ22 + S1133 σ33 

σ23 + 2S1113 σ13 + 2S1112 σ12 

(we’ll have to use contracted notation, so…) 

S12 σ2 + S13 σ3 + S14 σ4 + S15 σ5 + S16 σ6 

(Note: 2’s disappear!) 
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Consider each of the compliance terms separately: 

Case 1: Only σ11 applied 

ε1 = S11 σ1 

and we know 

E1 =	
σ1 due to σ1 only

ε1


1

⇒	 S11 =


E1


Case 2: Only σ22 applied 

ε1 = S12 σ2 

We need two steps here.

The direct relation to σ2 is from ε2: 


E2 = 
σ2 due to σ2 only

ε2


and we know

ν21 = −

ε1 due to σ2 only

ε2


⇒	
σ2 = − 

E2 due to σ2 only

ε1 ν21
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Thus: 
S12 = −

ν21 (due to σ2 only)
E2 

--> to make this a bit simpler (for later purposes), we recall the reciprocity 
relation: 

ν12 E2 = ν21 E1 

ν21 ν12⇒ = 
E2 E1 

Thus: 

S12 = −
ν12 

E1 

Case 3: Only σ3 applied 
In a similar manner we get: 

S13 = −
ν13 

E1 

Case 4: Only σ4 (σ23) applied 

ε1 = S14 σ4 

Again, two steps are needed. 
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First the direct relation of ε4 to σ4: 

G4 =	
σ4 due to σ4 only
ε4 

This is engineering strain! 

and then: 

η41 = −
ε1 due to σ4 only
ε4 

σ4 = − 
G4⇒ 

ε1 η41 

⇒ S14 = −
η41 due to σ4 only
G4 

Again, we use a reciprocity relation to get: 
η41 η14= 
G4 E1 

⇒ S14 = −
η14 due to σ4 only
E1 

We do the same for Case 5 of only σ5 applied, and 
Case 6 of only σ6 applied to 
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get: 

S15 = −
η15 

E1 
and 

S16 = −
η16 

E1 

With all this we finally get: 
1 

14 4  − η σ5 − η σ6 ]ε1 = 
E1 

[σ1 − ν12σ2 − ν13σ3 − η σ  15 16 

we used the reciprocity relations so 
we could “pull out” this common 
factor. 

We can do this for all the other cases. 
In general we write: 

1 6


n m=1 
Note: νnn = -1 
If we let η’s be ν’s 

Paul A. Lagace © 2001 Unit 5 - p. 13 

εn = − 
E ∑ νnm σm




MIT - 16.20 Fall, 2002 

“Engineering” Stress-Strain Equations 
General Form 

1

ε1 = 

E1 
[σ1 − ν12σ2 − ν13σ3 − η σ  15 16
14 4  − η σ5 − η σ6 ] 

1

ε2 = 

E2 
[− ν21 σ1 + σ2 − ν23σ3 − η σ4 − η σ5 − η σ6 ]
24 25 26


1

ε3 = 

E3 
[−ν31 σ1 − ν σ2 + σ3 − η34σ4 − η35σ5 − η36σ6 ]
ν32


1

γ 4 = ε4 = 

G4 
[−η41 σ1 − η42σ2 − η43σ3 + σ4 − η45σ5 − η46σ6 ]


1

γ 5 = ε5 = 

G5 
[−η51 σ1 − η52σ2 − η53σ3 − η54σ4 + σ5 − η56σ6 ]


1

γ 6 = ε6 = 

G6 
[−η σ1 − η62σ2 − η63σ3 − η64σ4 − η65σ5 + σ6 ]
61
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In general: 

1 6 
εn = − 

E ∑ νnm σm 
n m=1 

Note: νnn = -1 
η’s --> ν’s 

We have developed these for a fully anisotropic material. Again, 
there are currently no useful engineering materials of this nature. 
Thus, these would need to be reduced accordingly. 

Paul A. Lagace © 2001 Unit 5 - p. 15 



MIT - 16.20 Fall, 2002 

Orthotropic Case: 
In material principal axes, there is no coupling between extension and 
shear and no coupling between planes of shear, so: 

all ηmn = 0 

Thus, only the following constants remain: 
E1 ν12, ν21 G12 

E2 ν13, ν31 G13 

E3 ν23, ν32 G23 

3 + 3 + 3 = 9 

(same as Emnpq, better be!) 
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So the six equations become: 

1

ε1 = 

E1 
[σ1 − ν12σ2 − ν13σ3 ]


1

ε2 = 

E2 
[− ν21 σ1 + σ2 − ν23σ3 ]


1

ε3 = 

E3 
[−ν31 σ1 − ν32σ2 + σ3 ]


1

ε4 = σ4
G23


1

ε5 = σ5
G13


1

ε6 = σ6
G12
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matrix form: 

ε1   1 
−
ν12 −

ν13 0 0 0  σ1   
 

E1 E1 E1 
   

ε2  
   

−
ν21 

E
1

2 

−
ν23 0 0 0 


 σ2 

   E2 E2  
ε3 

 
− 

ν31 −
ν32 1 

0 0 0 
 σ3 


     
  =  

E3 E3 E3    
ε4   0 0 0

1
0 0  σ4  

   G23    
   1    
ε5   0 0 0 0

G13

0  σ5  
     


 1     
 0 0 0 0 0

G12 
 

σ6 ε6   

ε =  S σ

~ ~ ~


this is, in fact, the compliance matrix 
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Thus: 
•	 If we know the engineering constants (through tests -- this is 

upcoming) 

• Relate engineering constants to Smnpq 

•	 Get Emnpq by inversion of Smnpq matrix (combine steps to directly 
get relationships between Emnpq and the engineering constants) 

Isotropic Case

As we noted in the last unit, as we get to materials with less elastic

constants (< 9) than an orthotropic material, we no longer have any more

zero terms in the elasticity or compliance matrix, but more nonzero terms

are related.


For the isotropic case:


•	 All extensional moduli are the same: 
E1 = E2 = E3 = E 

•	 All Poisson’s ratios are the same: 
ν12 = ν21 = ν13 = ν31 = ν23 = ν32 = ν 

•	 All shear moduli are the same: 

G4 = G5 = G6 = G 
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• And, there is a relationship between E, ν and G (from Unified): 

E
G = 

2 1  + ν)( 
Thus, there are only 2 independent 
constants. 

We now have all the relationships to do the manipulations, 
but we need to measure the basic properties. We must 
therefore talk about… 

Testing 

Testing is used for a variety of purposes. 

Depending on the purpose, the technique and “care” will vary. The 
“fidelity” needed in the testing depends on the use. 

Basically, apply a load (stress) condition and measure appropriate 
responses: 
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• Strain 

• Displacements 

• Failure 
(or maybe vice versa) 

Concerns in test specimens 

• Boundary conditions and introduction of load 

• Stress concentrations 

• Achievement of desired stress state 

•	 Cost and ease of use also important (again, depends on 
use of test) 

Many of these concerns will depend on the material / configuration and 
load condition. This generally involves issues of scale. 

“Properties” of a material / structure depends on the “scale” at which you 
look at it. 

Scale ≈ level of homogenization (average behavior over a certain 
size) 
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Example 1:  Atoms make up a material 
Figure 5.1  Representation of atomic bonding as springs 

The behavior of the “materials” is some combination of the 
atoms and their bonds. 

Example 2: Composite 
Figure 5.2 Representation of unidirectional composite 

fibers in a matrix 

Fibers and matrix respond differently. “Average” their 
response to get “composite” properties 
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⇒ Must look at responses at length of 
several fiber diameters 

Example 3: A Truss 
Figure 5.3  Representation of a generic truss 

Each truss member responds in a certain way, but we can 
characterize the truss behavior on a large scale by looking 
at the displacement between A and B (∆l) and get a “truss 
stiffness”. 

Final Example: put all of these together 

• Truss 
• Members are composites 
• Composites have fibers and matrix 
• Fibers and matrix are composed of atoms 

⇒ a continuum! 
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Any material is really a structure. We are making an engineering 
approximation by characterizing it at a certain level. 

⇒ that is the limit / assumption on “material 
properties” and the tests we use to measure 
them. 

(so elastic constants are an 
engineering representation of 
“micromechanical” behavior) 

Thus, let’s keep in mind such issues of scale as we consider test 
methods. Must measure at or above pertinent scale of homogenization / 
averaging. 

There are many different types of tests, but in dealing with elastic 
constants, there are 3 basic load conditions (tension, compression, 
shear) 

The test specimen will depend on the material and the load condition. 

1. Tension (easiest to do) 
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Figure 5.4  Tension specimens 

Tapered Dogbone Straight-edged coupon 
Bar Specimen (composites) …stress 

concentration problem 

2. 	Compression 
Similar specimens can be used, but must beware of buckling 
(global and local instabilities) 

Possibility of local reinforcement to prevent buckling. 
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3. 	Shear 
Very hard to apply pure shear. 

Figure 5.5  Possible shear specimens 

Tube 

Iosipescu 

(beam theory shows area of 
pure shear -- test section) 

Refer to: ASTM (American Society for Testing 
and Materials) Annual Book of Standards 

Voluntary test standards are contained there. 
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⇒ what to do with test data 
Test data must be “reduced” to give the engineering 
constants. 

Figure 5.6  Typical stress-strain data (for ductile material) 

•	 The engineering constants are defined (somewhat 
arbitrary) as various parts of this curve. Generally within 
the “initial linear region”. 

• Often use linear regression 
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Key

⇒	 stress-strain relations with 

engineering constants attained in 
this manner are valid only in the 
linear region. 

Thus, one must report: 
• slope (engineering constant) 

•	 region of applicability 
Note: we have not dealt with temperature 
effects. We will consider this later. 

Also note: strength / failure properties are 
much harder to measure. 

(recall Unified: average behavior vs. local / 
weakest link) 
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We have now developed the general 3-D stress-strain relations. But we 
often deal with a problem where we can simplify (model as) to a 2-D 
system. Two important cases to next  consider: 

Plane Stress 

Plane Strain 
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