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Let’s first review a bit … 

from Unified, saw that there are 3 basic considerations in elasticity:


1. Equilibrium 
2. Strain - Displacement 
3. Stress - Strain Relations (Constitutive Relations) 

Consider each: 

1. Equilibrium  (3) 

• Σ Fi = 0, Σ Mi = 0 

• Free body diagrams 

•	 Applying these to an infinitesimal element 
yields 3 equilibrium equations 

Figure 4.1  Representation of general infinitesimal 
element 
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∂σ11 + 
∂σ21 + 

∂σ31 + f1 = 0 (4-1) 
∂y1 ∂y2 ∂y3 
∂σ12 + 

∂σ22 + 
∂σ32 + f2 = 0 (4-2)

∂y1 ∂y2 ∂y3 
∂σ13 + 

∂σ23 + 
∂σ33 + f3 = 0 (4-3)

∂y1 ∂y2 ∂y3 

∂
∂

+ σmn 

m 
n y
f 0 = 

2. Strain - Displacement  (6) 

• Based on geometric considerations 

• Linear considerations (I.e., small strains only -- we will talk about 

large strains later) 
(and infinitesimal displacements only) 
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ε11 =	
∂u1 (4-4)
∂y1 

ε22 =	
∂u2 (4-5)
∂y2 

ε33 =	
∂u3 (4-6)
∂y3 

ε21 = ε12 = 
1 

 
∂u1 + 

∂u2 

 

2  ∂y2 ∂y1 
 

ε31 = ε13 =	
1 

 
∂u1 + 

∂u3 

 

2  ∂y3 ∂y1 
 

ε32 = ε23 =	
1 


∂u2 + 

∂u3 

 

2  ∂y3 ∂y2 
 

(4-7) 

(4-8) 

(4-9) 

1 

∂um + ∂un 


εmn = 

2  ∂yn ∂ym 
 
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3. Stress - Strain  (6) 

σmn = Emnpq εpq 

we’ll come back to this … 

Let’s review the “4th important concept”: 
Static Determinance 

There are there possibilities (as noted in U.E.) 

a. 	A structure is not sufficiently restrained 
(fewer reactions than d.o.f.) 

degrees of 
freedom 

⇒ DYNAMICS 

b. 	Structure is exactly (or “simply”) restrained 
(# of reactions = # of d.o.f.) 

⇒ STATICS (statically 
determinate) 

Implication: can calculate stresses via 
equilibrium (as done in Unified) 
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c. 	Structure is overrestrained 
(# reactions > # of d.o.f.) 

⇒STATICALLY 
INDETERMINATE 

…must solve for reactions 
simultaneously with stresses, strains, etc. 

in this case, you must employ the stress-strain equations 

--> Overall, this yields for elasticity: 

15 unknowns  and 15 equations 

6 strains = εmn 3 equilibrium (σ) 
6 stresses = σmn 6 strain-displacements (ε) 
3 displacements = um 6 stress-strain (σ - ε) 

IMPORTANT POINT: 
The first two sets of equations are “universal” (independent of the 
material) as they depend on geometry (strain-displacement) and 
equilibrium (equilibrium). Only  the stress-strain equations are 
dependent on the material. 
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One other point: Are all these equations/unknowns independent? NO 
Why? --> Relations between the strains and displacements (due to 
geometrical considerations result in the Strain Compatibility Equations 

(as you saw in Unified) 

General form is: 

∂2εnk + 
∂2εml −

∂2εnl −
∂2εmk = 0 

y yl ∂ ∂yk y yk ∂ ∂ylm yn m yn

This results in 6 strain-compatibility (in 3-D). 
What a mess!!! 

What do these really tell us??? 
The strains must be compatible, they cannot be prescribed in 
an arbitrary fashion. 

Let’s consider an example: 

Step 1: consider how shear strain (ε12) is related to displacement: 

1  ∂u1 ∂u2 
 

 + ε12 = 
2  ∂y2 ∂y1 

 
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Note that deformations (um) must be continuous 
single-valued functions for continuity. (or it 
doesn’t make physical sense!) 

Step 2: 	Now consider the case where there are gradients in the strain 
field 

∂ε12 ≠ 0, 
∂ε12 ≠ 0 

∂y1 ∂y2 

This is the most general case and most likely in a general 
structure 

Take derivatives on both sides: 

∂2ε12 1  ∂3u1 ∂3u2  ⇒	 = 2 + 2y y2 2  y y2 y y2 
 

1 1 1 

Step 3: rearrange slightly and recall other strain-displacement 
equations 

∂u1 = ε1 , 
∂u2 ε2 = 

∂y1 ∂y2 
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∂2ε12 1  ∂2ε11 + 
∂2ε22  ⇒ = 2y y2 2  ∂y2 ∂y1

2 1 

So, the gradients in strain are related in certain ways since 
they are all related to the 3 displacements. 

Same for other 5 cases … 

Let’s now go back and spend time with the … 

Stress-Strain Relations and the Elasticity 
Tensor 

In Unified, you saw particular examples of this, but we now want to 
generalize it to encompass all cases. 

The basic relation between force and displacement (recall 8.01) is Hooke’s 
Law: 

F = kx 

spring constant (linear case) 
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If this is extended to the three-dimensional case and applied over 
infinitesimal areas and lengths, we get the relation between stress and 
strain known as: 

Generalized Hooke’s law: 

σmn = Emnpq εpq 

where Emnpq is the “elasticity tensor” 

How many components does this appear to have? 
m, n, p, q = 1, 2, 3 
⇒ 3 x 3 x 3 x 3 = 81 components 

But there are several symmetries: 

1. Since σmn = σnm (energy considerations) 

⇒ Emnpq = Enmpq 

(symmetry in switching first two 
indices) 

2. Since εpq = εqp (geometrical considerations) 

⇒ Emnpq = Emnqp 
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(symmetry in switching last two 
indices) 

3. 	From thermodynamic considerations 
(1st law of thermo) 

⇒ Emnpq = Epqmn 

(symmetry in switching pairs of 
indices) 

Also note that: 
Since σmn = σnm 

are only 6! 
, the apparent 9 equations for stress 

With these symmetrics, the resulting equations are: 

σ11  E1111 E1122 E1133 2E1123 2E1113 2E1112  ε11  
    


E1122 E2222 E2233 2E2223 2E2213 2E2212  

ε22 
σ22  
σ33  E1133 E2233 E3333 2E3323 2E3313 2E3312  ε33  
  =     

σ23  E1123 E2223 E3323 2E2323 2E1323 2E1223  

ε23  
σ13  E1113 E2213 E3313 2E1323 2E1313 2E1213  ε13  
      
σ12  E1112 E2212 E3312 2E1223 2E1213 2E1212  ε12  
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Results in 21 independent components of the elasticity tensor 
• Along diagonal (6) 
•	 Upper right half of matrix (15) 

[don’t worry about 2’s] 

Also note: 2’s come out automatically…don’t put them in ε~ 
For example: σ12 = … E1212 ε12 + E1221 ε21 … 

= … 2E1212 ε12 … 

These Emnpq can be placed into 3 groups: 

•	 Extensional strains to extensional stresses 
E1111 E1122 

E2222 E1133 

E3333 E2233 

e.g., σ11 = … E1122 ε22 … 

• Shear strains to shear stresses 
E1212 E1213 

E1313 E1323 

E2323 E2312 
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e.g., σ12 = … 2E1223 ε23 … 

•	 Coupling term: extensional strains to shear stress or 
shear strains to extensional stresses 

E1112 E2212 E3312 

E1113 E2213 E3313 

E1123 E2223 E3323 

e.g., 	 σ12 = …E1211 ε11… 
11 = …2E1123 ε23…σ

A material which behaves in this 
manner is “fully” anisotropic 

However, there are currently no useful engineering materials which 
have 21 different and independent components of Emnpq 

The “type” of material (with regard to elastic behavior) dictates the number 
of independent components of Emnpq: 
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2Isotropic 

3Cubic 

5“Transversely Isotropic”* 

6Tetragonal 

9Orthotropic 

13Monoclinic 

21Anisotropic 

# of Independent 
Components of Emnpq 

Material Type 

Useful 
Engineering 

Materials 

Composite 
Laminates 

Basic 
Composite 

Ply 

Metals 
(on average) 

Good Reference: BMP, Ch. 7

*not in BMP


For orthotropic materials (which is as complicated as we usually get), 
there are no coupling terms in the principal axes of the material 
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• When you apply an extensional stress, no shear strains arise 
e.g., E1112 = 0 

(total of 9 terms are now zero) 

• When you apply a shear stress, no extensional strains arise 
(some terms become zero as for 

previous condition) 

• Shear strains (stresses) in one plane do not cause shear strains 
(stresses) in another plane 

( E1223 , E1213 , E1323 = 0) 

With these additional terms zero, we end up with 9 independent 
components: 

(21 - 9 - 3 = 9) 

and the equations are: 
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σ11  E1111 E1122 E1133 0 0 0  ε11  
  


E1122 E2222 E2233 0 0 0    


σ22   

ε22  
σ33  E1133 E2233 E3333 0 0 0  ε33  
  =    

σ23  

 0 0 0 2E2323 0 0  ε23  
σ13   0 0 0 0 2E1313 0  ε13  
     
σ12  

 0 0 0 0 0 2E1212  ε12  

For other cases, no more terms become zero, but the terms are not 
Independent. 

For example, for isotropic materials: 

• E1111 = E2222 = E3333 

• E1122 = E1133 = E2233 

• E2323 = E1313 = E1212 

• And there is one other equation relating E1111 , E1122 and E2323 

⇒ 2 independent components of Emnpq 

(we’ll see this more when we do engineering constants) 
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Why, then, do we bother with anisotropy? 
Two reasons: 
1.	 Someday, we may have useful fully anisotropic materials 

(certain crystals now behave that way) Also, 40-50 years ago, 
people only worried about isotropy 

2.	 It may not always be convenient to describe a structure (i.e., 
write the governing equations) along the principal material axes. 

How else? 
Loading axes 

Examples 

Figure 4-2 

wing 

rocket case 
fuselage
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In these other axis systems, the material may have “more” elastic 
components. But it really doesn’t. 

(you can’t “create” elastic components just by describing a material in 
a different axis system, the inherent properties of the material stay the 
same). 

Figure 4-3 Example: Unidirectional composite (transversely isotropic) 

No shear / extension coupling	 Shears with regard to loading 
axis but still no inherent 
shear/extension coupling 

In order to describe full behavior, need to do 
…TRANSFORMATIONS 

(we’ll review this/expand on it later) 
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--> It is often useful to consider the relationship between 
stress and strain (opposite way). For this we use 

COMPLIANCE 

εmn = Smnpq σpq 

where: Smnpq = compliance tensor 

Paul A. Lagace © 2001
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Using matrix notation: 
σ = E ε ~ ~ ~ 
and E-1 σ ~~ = ε ~ 

inverse 

with ε = S σ~ ~ ~  
this means 

E-1 = S~ ~ 

⇒ E S = I~ ~  ~ 
⇒The compliance matrix is the 

inverse of the elasticity matrix 

Note:  the same symmetries apply to Smnpq as 
to Emnpq 
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Meaning of each: 

•	 Elasticity term Emnpq: amount of stress (σmn) related to the 
deformation/strain (εpq) 

•	 Compliance term Smnpq: amount of strain (εmn) the stress (σpq) 
causes 

These are useful in defining/ determining the “engineering constants” 

All of this presentation on elasticity (and what you had in 

Unified) is based on assumptions which limit their 
applicability: 

which we will review / introduce / expand on in the next lecture. 

CAUTION 

• Small strain 
• Small displacement / infinitesimal (linear) strain 

Fortunately, most engineering structures are such that these assumptions 
cause negligible error. 
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However, there are cases where this is not true: 
• Manufacturing (important to be able to convince) 
• Compliant materials 
• Structural examples: dirigibles, … 

So let’s explore: 

Large strain and the formal definition of strain 

What we defined before are the physical manifestation of strain / 
deformation 

• Relative elongation 
• Angular rotation 

Strain is formally defined by considering the diagonal length of a cube: 
Figure 4-4 undeformed x3 

(small letters) 

x2 

Paul A. Lagace © 2001 
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and looking at the change in length under general (and possibly large) 
deformation: 

Figure 4-5 deformed 
(capital letters) x3 

x2 

x1 

The formal definition of the strain tensor is: 

2 2
2γ mn dxm dxn = (dS) - (ds) 

⇒ 2γ 11 dx1 dx1 + 2γ 22 dx2 dx2 + 2dγ 33 dx3 dx3 

+ 2(γ 12 + γ 21) dx1 dx2 + 2(γ 13 + γ 31) dx1 dx3 

2 2+ 2(γ 23 + γ 32 ) dx2 dx3 = (dS) − (ds) 
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where γmn = formal strain tensor. 

This is a definition. The physical interpretation is related to 
this but not directly in the general case. 

One can show (see BMP 5.1 - 5.4) that the formal strain tensor is related 
to relative elongation (the familiar ∆l ) via: 

l 

relative elongation in m-direction: 

Em = m1 γ m+ 2 − 1 (no summation on m) 

and is related to angular change via: 
2γ mnsin φ = mn (1 + Em ) (1 + En ) 

Thus, it also involves the relative elongations! 

Most structural cases deal with relatively small strain. If the relative 
elongation is small (<<100%) 

⇒ Em <<1 
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look at: 
Em = 1 + 2γ mm − 1 

2 ⇒ (Em + 1) = 1 + 2γ mm 

E2 + 2Em = 2γ mmm 

but if Em << 1, then E2
m ≈ 0 

⇒ Em = γmm 

Relative elongation = strain 
∆l = ε small strain approximation!
l 

Can assess this effect by comparing 2Em and Em (2 + Em) 

relative 
elongation = Em 

2Em Em (2 + Em) % error 

0.01 0.02 0.0201 0.5% 
0.02 0.04 0.0404 1.0% 
0.05 0.10 0.1025 2.4% 
0.10 0.20 0.2100 4.8% 
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Similarly, consider the general expression for rotation: 
2γ mnsin φ = mn (1 + Em ) (1 + En ) 

for small elongations (Em << 1, En << 1) 
⇒ sin φmn = 2γ mn 

and, if the rotation is small: 

sin φmn ≈ φmn 

⇒ φmn = 2γ mn 

= 2εmn	 small strain approximation! (as before) 

Note: factor of 2 ! 

Even for a balloon, the small strain approximation may be good enough 

So: from now on, small strain assumed, but 
• understand limitations 
• be prepared to deal with large strain 
•	 know difference between formal definition and the engineering 

approximation which relates directly  to physical reality. 
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What is the other limitation? It deals with displacement, so 
consider 

Large Displacement and Non-Infinitesimal 
(Non-linear) Strain 

See BMP 5.8 and 5.9 
The general strain-displacement relation is: 

1  ∂u ∂u ∂u ∂u  
γ mn =  

m + n + r s δrs 2  ∂xn ∂xm ∂xm ∂xn  

Where: 
δrs = Kronecker delta 

The latter terms are important for larger displacements but are higher 
order for small displacements and can then be ignored to arrive back 
at: 

1 

∂um + ∂un 


εmn = 

2  ∂yn ∂ym 
 

Paul A. Lagace © 2001 Unit 4 - p. 27 



MIT - 16.20 Fall, 2002 

How to assess? 

Look at 
∂um ∂ur ∂usvs. δrs∂xn ∂xm ∂xn 

and compare magnitudes 

Small vs. large and linear vs. nonlinear will depend on: 

• material(s) 
• structural configuration 
• mode of behavior 
• the loading 

Examples 

• Rubber in inflated structures 
⇒ Large strain (Note: generally means larger displacement) 

• Diving board of plastic or wood 
⇒ Small strain but possibly large displacement (will look at this 

more when we deal with beams) 
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• Floor beam of steel 
⇒ Small strain and linear strain (Note: linear strain must also be 
⇒ small) 

Next…back to constitutive constants…now their physical 
reality 
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