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The logical extension of discrete mass systems is one of an 
infinite number of masses. In the limit, this is a continuous 
system. 

Take the generalized beam-column as a generic representation: 
2d 2  

EI
d w   

dx2  dx2 
 − 

d 
 F

d w  

 

= pz (23-1)
d x   d x   

Figure 23.1 Representation of generalized beam-column 

d F  
= − pxd x  

This considers only static loads. Must add the inertial load(s). Since the 
concern is in the z-displacement (w): 

˙̇Inertial load unit length = m w  (23-2) 
where: m(x) = mass/unit length 
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Use per unit length since entire equation is of this form. Thus: 
2
d 2  

EI
d w  


dx2  dx2 
 − 

d 
 F

d w  

 

= pz − m ˙̇ 

d x   d x   

or: 

2
d 2  
EI

d w   
˙̇ 


dx2  dx2 
 − 

d 
 F

d w  

 

+ m w  = pz (23-3)

d x   d x   

Beam Bending Equation 

often, F = 0 and this becomes: 
2
d 2

2 


 EI

d w   
+ m w  = pzdx  dx2  

˙̇  

--> This is a fourth order differential equation in x

--> Need four boundary conditions 

--> This is a second order differential equation in time 
--> Need two initial conditions 
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Notes: 

• Could also get via simple beam equations. Change occurs in: 
d S  

= pz − m ˙̇  
d x  

• If consider dynamics along x, must include mu̇̇ in px term: ( px − mu̇̇) 

Use the same approach as in the discrete spring-mass systems: 

Free Vibration 

Again assume harmonic motion. In a continuous system, there are an 
infinite number of natural frequencies (eigenvalues) and associated 
modes (eigenvectors) 

so: 
ωw x( ,  t) = w (x) e 

separable solution spatially (x) and temporally (t) 

Consider the homogeneous case (pz = 0) and let there be no axial forces 
(px = 0 ⇒ F = 0) 
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So: 
2
d 2  

EI
d w   

+ m w  = 0 
dx2  dx2  

˙̇  

Also assume that EI does not vary with x: 
4


˙̇EI
d w  

+ m w  = 0 (23-5)

dx4


Placing the assumed mode in the governing equation: 
4


EI
d w

e ω − mω 2 w e ω = 0

dx4


This gives: 
4


EI
d w  

− mω 2 w = 0 (23-6)

dx4


which is now an equation solely in the spatial variable (successful 
separation of t and x dependencies) 

_
Must now find a solution for w(x) which satisfies the differential equations 
and the boundary conditions. 

Note: the shape and frequency are intimately linked 
(through equation 23-6) 
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Can recast equation (23-6) to be: 
4d w  mω 2 

dx 4 − w = 0 (23-7)
EI 

The solution to this homogeneous equation is of the form: 

w x( )  = e p x  

Putting this into (23-7) yields 

4 p x  mω 2 

p e  − e p x  = 0 
EI 

4 mω 2 

⇒	 p = 
EI 

So this is an eigenvalue problem (spatially). The four roots are: 
p = + λ, -λ, + iλ, - iλ 

where: 
1 4  

 mω 2  
/ 

λ =  
 EI  

This yields: 
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λw x( )  = Ae λ x + Be −λ x + Ce i λ x + De − i x

or: 

w x( )  = C1 sinhλx + C2 coshλx + C3 sinλx + C4 cosλx (23-8) 

The constants are found by applying the boundary conditions 
(4 constants ⇒ 4 boundary conditions) 

Example: Simply-supported beam 

Figure 23.2 Representation of simply-supported beam 

EI, m = constant with x 

4 2 

EI
d w  

+ m
d w  

= pzdx4 dt2 
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Boundary conditions: 

@ x = 0 w = 0 
2 

@ x = l M = EI
d w  

= 0 
dx2 

with: 

w x( )  = C1 sinhλx + C2 coshλx + C3 sinλx + C4 cosλx 

Put the resulting four equations in matrix form 

w 0 
2 

( )  = 0 
 0 1 0 1  C1  0

d w  

dx2 ( )  = 0 
 

0 1 0 −1     0 C2  0   =   
( )  = 0 sinhλl coshλl sinλl cosλl  C3  0w l

d w  
sinhλl coshλl − sinλl − cosλl

 C4  02     
l 

dx2 ( )  = 0 

Solution of determinant matrix generally yields values of λ which then 
yield frequencies and associated modes (as was done for multiple mass 
systems in a somewhat similar fashion) 
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In this case, the determinant of the matrix yields: 

C sinλl = 03 

Note: 	Equations (1 & 2) give C2 = C4 = 0 
Equations (3 & 4) give 2 C3 sinλl = 0 

⇒ nontrivial: λl = nπ 

The nontrivial solution is: 

λl = nπ (eigenvalue problem!) 

Recalling that: 
1 4  

 mω 2  
/ 

λ =  
 EI  

4mω 2 n π 4 
(change n to r to be consistent with⇒	 = 

EI l4 previous notation) 

2 2  ⇒ ω r = r π 
EI 

ml4 <-- natural frequency 
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As before, find associated mode (eigenvector), by putting this back in the 
governing matrix equation. 

Here (setting C3 = 1…..one “arbitrary” magnitude): 

π 
w x( )  = φr = sin <-- mode shape (normal mode)

l  for: r = 1, 2, 3,……∞ 

Note: A continuous system has an infinite number of 
modes 

So total solution is: 

π  2 2  EI 

ml4 

 
w x( ,  t) = φr sinω rt = sin sin  r π tl   

--> Vibration modes and frequencies are: 

Paul A. Lagace © 2001 Unit 23 - 10 



MIT - 16.20 Fall, 2002 

Figure 23.3 Representation of vibration modes of simply-supported beam 

1st mode ω = π 2 
1 4 

EI 

ml

2nd mode ω = 4π 2 
2 4 

EI 

ml

3rd mode ω = 9π 2 
3 4 

EI 

ml

etc. 

Same for other cases 
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Continue to see the similarity in results between continuous and multi-
mass (degree-of-freedom) systems. Multi-mass systems have 
predetermined modes since discretization constrains system to deform 
accordingly. 

The extension is also valid for… 

Orthogonality Relations 

They take basically the same form except now have continuous functions 
integrated spatially over the regime of interest rather than vectors: 

l 

∫0 
m x  x x( )  φr ( )  φs ( )  dx = Mr δ rs 

(23-9) 

= 1 for r = s
where: δ rs 

= kronecker delta = 0 for r ≠ s 
l 

( )  φr 
2 ( )  dxMr = ∫0 

m x x 

generalized mass of the rth mode 
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So: 
l 

∫0 
m φ φs dx = 0 r ≠ s r 

l 

∫0 
m φ φr dx = Mrr 

Also can show (similar to multi degree-of-freedom case): 
2l d 2 


 

EI 
d

dx 

φ 
2 
r 

 φs dx = δ rs Mr ω r 

2 (23-10)∫0 dx2  

This again, leads to the ability to transform the equation based on the 
normal modes to get the… 

Normal Equations of Motion 

Let: 
∞ 

w x( ,  t) = ∑φr (x) ξr ( )t (23-11) 
r = 1 

normal mode normal coordinates 
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Place into governing equation: 
2 2d 2

2 


 EI

d w   
+ m

d w  
= z ( )

dx  dx2  dt2 

l 
multiply by φs and integrate ∫0 

dx to get: 

∞ 
˙̇  

∞ d 2  2 

∑ ξr ∫0 

l
m φr φs dx + ∑ξr ∫0 

l 
φs dx2 

 EI 
d

dx 

φ 
2 
r 
 

dx = ∫0 

l 
φs f dx 

r =1 r =1 

Using orthogonality conditions, this takes on the same forms as 
before: 

˙̇M ξ + M ω 2ξ = Ξ (23-12)
r r  r r r r 

r = 1, 2, 3,……∞ 
l 

with: Mr = ∫0 
m φr 

2 dx - Generalized mass of rth mode 

l 
Ξr = ∫0 

φr z ( ,  t) dx - Generalized force of rth mode 

ξ r (t) = normal coordinates 
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Once again 
• each equation can be solved independently 

• 	allows continuous system to be treated as a series of “simple” 
one degree-of-freedom systems 

• 	superpose solutions to get total response (Superposition of 
Normal Modes) 

• often only lowest modes are important 
• difference from multi degree-of-freedom system: n --> ∞ 

--> To find Initial Conditions in normalized coordinates…same as before: 

( , 0) = ∑φr (x) ξr ( )w x  0 
r etc. 

Thus: 
1 l 

0ξr ( )  = 
M ∫0 

m φr w0 (x) dx 
r (23-13) 

˙ 
r ( )  = 

1 
∫0 

l
m φr ẇ0 ( )  dxξ 0 x 

Mr 
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Finally, can add the case of… 

Forced Vibration 

Again… response is made up of the natural modes 

• Break up force into series of spatial impulses 

• Use Duhamel’s (convolution) integral to get response for each 
normalized mode 

ξ
ω 

τ τ τr 
r r  

r t
M 

t 
t 

( ) = ( ) − ( ) ∫
1 

0 
Ξ sin ω r d (23-14) 

• Add up responses (equation 23-11) for all normalized modes 

(Linear ⇒ Superposition) 

What about the special case of… 

--> Sinusoidal Force at point xA 

Paul A. Lagace © 2001 Unit 23 - 16 



x F  

MIT - 16.20 Fall, 2002 

Figure 23.4  Representation of force at point xA on simply-supported 
beam 

F t( )  = Fo sin Ω t 

As for single degree-of-freedom system, for each normal mode get: 

t Aξr ( )  = 
φr ( )  o 

2 
sin Ω t 

Mr ω r 
2 


1 −

Ω 
2 
 

 ω r 

for steady state response (Again, initial transient of sin ωrt dies out 
due to damping) 

Add up all responses… 
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Note:


• Resonance can occur at any ωr 

• DMF (Dynamic Magnification Factor) associated with each normal 
mode 

--> Can apply technique to any system. 

• Get governing equation including inertial terms 

• Determine Free Vibration Modes and frequencies 

• Transform equation to uncoupled single degree-of-freedom system 
(normal equations) 

• Solve each normal equation separately 

• Total response equal to sum of individual responses 

Modal superposition is a very powerful technique! 
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