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Previously saw (in Unit 19) that a multi degree-of-freedom 
system has the same basic form of the governing equation as 
a single degree-of-freedom system. 

The difference is that it is a matrix equation: 

mq̇̇ + k q = F (22-1)~ ~ ~ ~ ~ 

~ = matrix 

So apply the same solution technique as for a single degree-of-freedom 
system. Thus, first deal with… 

Free Vibration 

Do this by again setting forces to zero: 

F = 0
~ ~

mq̇̇ + k q = 0 (22-2)~ ~ ~ ~ ~ 
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Again assume a solution which has harmonic motion. It now has multiple 
components: 

ωq t( )  =	 Ae (22-3)
~~ 

where ω are the natural frequencies of the system 
and:  M  

 A is a vector of constants = Ai ~ 
 

 M 


Substituting the assumed solution into the matrix set of governing 
equations: 

i t  
⇒	 −ω

2 mA e + k A e i t  = 0
~ ~  ~ ~ ~ 

To be true for all cases: 

[ k − ω 2 m ] A = 0 (22-4)~ ~ ~ ~ 

This is a standard eigenvalue problem. 

Either: 
A = 0 (trivial solution)~ 

or 
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The determinant: 

k − ω 2 m = 0 (22-5)~ ~ 

There will be n eigenvalues for an n degree-of-freedom system. 
In this case: 

eigenvalue = natural frequency 

⇒ n degree-of-freedom system has n natural frequencies 

Corresponding to each eigenvalue (natural frequency), there is an… 

Eigenvector -- Natural Mode 

• Place natural frequency ωr into equation (22-4): 

[ k − ω r 
2 m ] A = ~0 ~ ~ ~ 

• Since determinant = 0, there is one dependent equation, so one 
cannot solve explicitly for A. However, one can solve for the~ 
relative values of the components of A in terms of (normalized~ 
by) one component 
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• Say divide through by An: 

 M 

A 

A 
i 

n 



 [~ k − ω i 

2 m ]   = ~ 0 ~ 
 M  
 1 
 


• Solve for Ai / An for each ωr 

 M  
A 

A 
i 

n 

 
  r Indicates solution•	 Call the eigenvector   = φi 

( )  

 M  ~ for ωr 

 1 
 

• Do this for each eigenvalue 

frequency: ω1, ω2 ……. ωn 

1 2 φi 
( )associated mode: φi 

( )  φi 
( )  n 

~ ~ ~ 
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For each eigenvalue, the homogeneous solution is: 
r r rq i hom = φi 

( )  e iω r t = C1 φi 
( )  sinω r t + C2 φi 

( )  cosω r t 
~ ~ ~ ~ 

homogeneous 

Still an undetermined constant in each case (An) which can 
be determined from the Initial Conditions 

•	 Each homogeneous solution physically represents a possible free 
vibration mode 

• Arrange natural frequencies from lowest (ω1) to highest (ωn) 

• By superposition, any combinations of these is a valid solution 

Example: Two mass system (from Unit 19) 

Figure 22.1  Representation of dual spring-mass system 
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The governing equation was: 

m1 0  ̇ 1̇  (k1 + k2 ) −k2 q1   F1  

 0 m2 ˙̇ 2  
  =     + 


 −k2 k2 q2  F2  

Thus, from equation (22-5): 

(k1 + k2 ) − ω 2 m1 −k2 = 0
2−k2 k2 − ω m2 

This gives: 

[(k1 + k2 ) − ω 2 m1 ][k2 − ω 2 m2 ] − k2
2 = 0 

This leads to a quadratic equation in ω2. Solving gives two roots (ω 12 and 
ω2

2) and the natural frequencies are ω1 and ω2 

Find the associated eigenvectors in terms of A2 (i.e. normalized by A2) 
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Go back to equation (22-4) and divide through by A2: 

(k1 + k2 ) − ω r 
2 m1 −k2  A1  

   = 0 
 −k2 k2 − ω r 

2 m2  1  

Normalized constant 
k 

⇒ A1 = 
k1 + k2

2 

− ω r 
2 m1 

for ωr mode 

Thus the eigenvectors are: 

 k2   k2  

1  k1 + k2 − ω1
2 m1  φ ( )   k1 + k2 − ω2

2 m1 2φi 
( )  =   i =   ~ ~    


 1   1 


For the case of Initial Conditions of 0, the cos term goes away and are left 
with… 

rq t( )  = φ ( )  sin ω r t 
~ ~ 

Physically the modes are: 
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Figure 22.2  Representation of modes of spring-mass system 

φ(1) 
ω1 (lowest 

frequency) 

masses move in same direction 

φ(2) 

frequency) 
ωωωω2 (higher 

masses move in opposite direction 
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General Rules for discrete systems:


•	 Can find various modes (without amplitudes) by considering 
combinations of positive and negative (relative) motion. 

However, be careful of (-1) factor across entire mode. 

For example, in two degree-of-freedom case 

+ + + -
same mode same mode 

- - - + 

•	 The more “reversals” in direction, the higher the mode (and the 
frequency) 

• It is harder to excite higher modes 

This can be better illustrated by considering the vibration of a beam. So 
look at: 

Representation of a Beam as a Discrete 
Mass System 
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How? 

•	 Lump mass into discrete locations with constraint that total mass be 
the same 

•	 Connect masses by rigid connections with rotational springs at each 
mass 

•	 Stiffnesses of connections are influence coefficients (dependent on 
locations of point masses) 

• Forces applied to point masses 

So: 

Figure 22.3  Representation of cantilevered beam as single mass 
system 

A 

becomes for 
simplest case with torsional 

spring at joint 

B 

where: m = ρtwl length 
density 

thickness 
width 
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Could also put mass at mid-point: 

Figure 22.4  Representation of cantilevered beam as mid-point mass 
system 

⇒ get a different representation 

Consider the next complicated representation (simplest multi-
mass/degree-of-freedom system) 

Figure 22.5  Representation of cantilevered beam as dual spring-mass 
system 
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each m is one half of total mass of beam for constant cross-section 
case 

Use influence coefficients, get C matrix, invert to get K. Resulting~ ~ 
equation is: 

m1 0  ̇ 1̇  k11 k12 q1   F1  
   +    =   
 0 m2 ˙̇ 2  k21 k22 q2  F2  

Same form as before, so solution takes same form. For initial rest 
conditions: 

rq t( )  = φ ( )  sin ω r t 
~ ~ 

Have two eigenvalues (natural frequencies) and associated 
eigenvectors (modes) 

⇒ Modes have clear physical interpretation here: 
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Figure 22.6  Representation of deflection modes of cantilevered beam as 
dual spring-mass system 

q2 (+) 

φ(1)	 ω1 (lowest 
frequency) 

φ(2)	 ω2 (higher 
frequency) 

q1 (+) 

q1 (-) 

q2 (+) 
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Can extend by dividing beam into more discrete masses


--> get better representation with more equations but same basic 
treatment/approach 

In considering the modes that result from such an analysis, there is a key 
finding: 

Orthogonality Relations 

It can be shown that the modes of a system are orthogonal. That is: 
transpose 

rφ ( )T
m φ (s) = 0 (22-6)

~ ~ ~ 

for r ≠ s 

If r = s, then a finite value results: 
r T rφ ( )  m φ ( )  = Mr (22-7)~ ~~ 

some value 

So the general relation for equations (22-6) and (22-7) can be 
written as: 
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φ ( )r T
m φ ( s ) = δ rs Mr (22-8)~ ~ ~ 

δrs is the kronecker delta where: 

δrs = 0 for r ≠ s 
δrs = 1 for r = s 

This relation allows the transformation of the governing equation into a 
special set of equations based on the (normal) nodes… 

Normal Equations of Motion 

These resulting equations are uncoupled and thus much easier to solve 

The starting point is the eigenvectors (modes) and the orthogonality 
relations 

One must also note that: 

φ ( )r T
k φ (s) = δ rs Mr ω r 

2 (22-9) 
~ ~ ~ 
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(can show using equations (22-2) and (22-8) ) 

Have shown that the homogeneous solution to the general equation: 
mq̇̇ + k q = F (22-1)~ ~ ~ ~~ 

is the sum of the eigenvectors (modes): 
n 

rq t  i 
( )  ti ( )  = ∑φ ξr ( )  (22-10)

~ r = 1 

n = number of degrees of freedom 

Where ξr(t) is basically a magnitude associated with the mode φ(r) at 
time t. The ξr become the “normalized coordinates”. 

Thus: 

1 3q 1  φ1
( )  φ (2) φ ( )  L φ (n)  ξ1 1 1 1 

  φ2
2  ξ    ( )  M M M   2 

q 2    
q 3  =  M M M M  ξ3  

  M  M  

 

M M M M     
nq n   M M M L φn 

( )  
 ξn  
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which can be written as: 
q = φ ξ  (22-11)
~ ~ ~ 

Placing (22-11) into (22-1) 

mφ ξ̇̇ + k φ ξ  = F (22-12)~ ~ ~~ ~ ~ ~ 
Now multiply this equation by the transpose of φ: 

~ 
2φ ( )  

1
1 φ ( )  L L 

 2  
φ T = φ2

( )  L  
~	  M  

 n 
φ

( )  L L L 

φT mφ ξ̇̇ + φT k φ ξ = φT F (22-13)~ ~ ~ ~ ~ ~ ~ ~ ~  ~ 
Notice that the terms of φTm φ and φTkφ will result in most of the terms ~ ~ ~ ~ ~ ~ 
being zero due to the orthogonality relation (equation 22-8). Only the 
diagonal terms will remain. 

Thus, (22-13) becomes a set of uncoupled equations: (via 22-8 and 22-9) 
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˙̇ξMr r  + Mr ω r 
2ξr = Ξr (22-14) 

r = 1, 2 …n 

That is: 
˙̇M ξ + M ω 2ξ = Ξ1 1  1 1 1 1 

˙̇M ξ + M2 ω2
2ξ2 = Ξ22 2  

˙̇M ξ + M ω 2ξ = Ξn n  n n n n 

where: 
rφ1

( )   
r φ2

( )  L ] m φ2
( )   = Generalized massMr = [ φ1

( )  r 

~ 
 r 

 
  of rth mode 
 M  

and: 

Paul A. Lagace © 2001 Unit 22 - 19 



MIT - 16.20 Fall, 2002 

 F1  
Ξr = [ φ1

( )  r  r φ2
( )  L ] F2  = Generalized force of rth mode 

 
 M 

ξr(t) = normal coordinates 

The equations have been transformed to normal coordinates and are now 
uncoupled single degree-of-freedom systems 

Implication: Each equation can be solved 
separately 

The overall solution is then a superposition of the individual solutions 
(normal nodes) 

Free Vibration (Ξ = 0) 

--> solution…use same technique as before 

• For any equation r: 
ξ = a sinω t + b cosω tr r r r r 
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• Get ar and br via transformed Initial Conditions 

rξr ( )  = 
1 

φ ( )T
m qi ( )  = br0 0~M ~ 

r 

r˙ 
r ( )  = 

1 
φ ( )T

m q̇i ( )  = arω rξ 0 0 ~M ~ r 

Notes: 

•	 KEY SIMPLIFICATION is that often only first few (lowest) 
modes are excited so can solve only first few equations. 
Can add more modes (equations) to improve solution if 
needed. 

•	 This is a rigorous treatment -- no approximation made by 
going to normal coordinates. 

But, this has all been based on the homogeneous case (free vibration), 
what about… 
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Forced Vibration (Ξ ≠ 0) 

Response is still made up of the natural modes. Solution is found using 
the same approach as for a single degree-of-freedom system… 

• Break up each generalized force, Ξr, into a series of impulses 

•	 Use Duhamel’s (convolution) integral to get response for each 
degree of freedom 

• Stay in normalized coordinates 

The solution for any mode will thus look like: 

1 t 
ξr (t) = 

r r  
∫0 

Ξr (τ) sin ω r (t − τ) dτ
M ω 

and equation (22-11) then gives: 
n 

rq t  i 
( )  ti ( )  = ∑φ ξr ( )  

r = 1 

Again, use Initial Conditions to get constants 

Paul A. Lagace © 2001 Unit 22 - 22 



⇒⇒⇒

MIT - 16.20 Fall, 2002 

Exact same procedure as single degree-of-freedom system. Do it 
multiple times and add up. 

(Linear ⇒ Superposition) 

Can therefore represent any system by discrete masses. As 
more and more discrete points are taken, get a better model of 
the actual behavior. Taking this to the limit will allow the full 
representation of the behavior of continuous systems. 
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