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Have considered the vibrational behavior of a discrete system.
How does one use this for a continuous structure?

First need the concept of.....

Influence Coefficients

which tell how a force/displacement at a particular point “influences”
a displacement/force at another point

--> useful iIn matrix methods...

« finite element method
e |lumped mass model (will use this in next unit)

--> consider an arbitrary elastic body and define:
Figure21.1 Representation of general forces on an arbitrary elastic body
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g, = generalized displacement (linear or rotation)
Q; = generalized force (force or moment/torque)

Note that Q, and g; are:
e at the same point
 have the same sense (i.e. direction)

o of the same “type”
(force <= displacement)
(moment <= rotation)

For a linear, elastic body, superposition applies, so can write:

( d,= C,Q + C,Q, + C,Q,
q; = C”- Qj i = CuQ + CuQ + G, Q
L= GQ + G, Q + GG

or in Matrix Notation:

rql\ -C11 C12 C13- rQl\
192 ¢ = C21 sz C23 3 Qz g
d, ] _C31 C32 C33 ] \Qs ]

"
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Note: | | -->row
{ }-->column
[

| --> full matrix

1} :[Cu'] {QJ}
4=C0

C,; = Elexibility Influence Coefficient

and it gives the deflection at i due to a unit load at |
C,, = is deflection at 1 due to force at 2

Figure21.2 Representation of deflection point 1 due to load at point 2
G2

Z\ (Note: C; can mix types)
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Very important theorem:

Maxwell’'s Theorem of Reciprocal Deflection
(Maxwell’s Reciprocity Theorem)

Figure 21.3 Representation of loads and deflections at two points on an
elastic body

Q,
&2
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7

g, due to unit load at 2 is equal to g, due to unit load at 1
l.e. C,=C,,

Generally:

Cij — le symmetric
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This can be proven by energy considering (path independency of

work)

--> Application of Flexibility Influence Coefficients

Look at a beam and consider 5 points...

Figure 21.4 Representation of beam with loads at five points
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Beam

The deflections q,...qs can be characterized by:

.
ds
ds
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Since C; = C;, the [C;] matrix Is symmetric

Thus, although there are 25 elements to the C matrix in this case,
only 15 need to be computed.

So, for the different loads Q;....Qg, one can easily compute the q,....q
from previous work...

Example: C; for a Cantilevered Beam
Figure21.5 Representation of cantilevered beam under load

find: C; --> deflection at i due to unit load at |

* Most efficient way to do this is via Principle of Virtual Work
(energy technique)

 Resort here to using simple beam theory:

d*w
El = M(X
dXZ ( )
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What is M(x)?
--> First find reactions:

Fall, 2002

Figure21.6 Free body diagram to determine reactions in cantilevered

beam
-I————-iKﬁ ﬂ————Ii_-
M
= V=1
M = -1X

--> Now find M(x). Cut beam short of x;

Figure21.7 Free body diagram to determine moment along
cantilevered beam

ixa{"—x—” .>N(x)

s (%)
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SM, =04

= 1-x, - 1'x + M(x) = 0
= M(X) = —1(xj - x)

Plugging into deflection equation:

d’w
Bl = ~1(x - x|
for EI constant:
dw 1 X*
- = o — | xx- =] +
dx El ( ’ 2) G

1 x> X
—E—I(XJZ - 6)+C1X+C2

Boundary Conditions:

@X=0 w=0=0C, =0

@x=09_0=¢ -0
dx
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So:

3
W = 1 (Xi - xfx.)
2EI1 \ 3 :

One important note:

w Is defined as positive up, have defined g; as positive down.
So:

1 /Xizxj X_'?)\ for x; = x;
6 | ’

Deflection, g;, at x; due to unit force, Q;, at X,
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--> What about for x; < x,? Does one need to go through this whole
procedure again?

No! Can use the same formulation due to the symmetry of o
(C;=Cy)
--> Thus far have looked at the influence of a force on a displacement.

May want to look at the “opposite”: the influence of a displacement
on a force. Do this via...

Stiffness Influence Coefficients
=k

where can write;

Q =kyq + ky0, + k0,
Q,=kyq + ky,0, + k0,
Q,= Ky + K0 + K30
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Q=kq
If compare this with:
9=CQ
= k=C"

~ ~

[KJ] B [C'i ]_1V\inverse matrix

Note: Had a similar situation in the continuum case:

E=S"
/ -
elasticity compliance
(stiffness) (flexibility)

--> Look at the Physical Interpretations:
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Flexibility Influence Coefficients

Figure21.8 Physical representation of flexibility influence coefficients
for cantilevered beam

Cix Cyy
J Co TP \
Ry T —
“
. 3
v
1 unit level

C; = displacement at i due to unit load at |

Note: This is only defined for sufficiently
constrained structure
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Stiffness Influence Coefficients

Figure21.9 Physical representation of stiffness influence coefficients
for cantilevered beam

X
% 1 unit displacement

/f’qrff"

Ky Ky, h
33

ki = forces at I's to give a unit displacement at | and zero
displacement everywhere else (at nodes)

(much harder to think of than C;)

Note: This can be defined for unconstrained
structures
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« calculating [C;] first, then inverting

(_1)i+j
A
?

minor of
C.

1)

kij=

determinant of [C;]

Note: k™ may be singular (indicates “rigid body” modes)
--> rotation

--> translation
--> etc.

« calculating [k;] directly from individual local [k;] elements and
adding up for the total system

N

Most convenient way

Note: This latter method is the basis for finite
element methods
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