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Have considered the vibrational behavior of a discrete system. 
How does one use this for a continuous structure? 

First need the concept of….. 

Influence Coefficients 
which tell how a force/displacement at a particular point “influences” 
a displacement/force at another point 

--> useful in matrix methods… 
• finite element method 
• lumped mass model (will use this in next unit) 

--> consider an arbitrary elastic body and define: 

Figure 21.1  Representation of general forces on an arbitrary elastic body 
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qi = generalized displacement (linear or rotation) 
Qi  = generalized force (force or moment/torque) 

Note that Qi and qi are: 
• at the same point 
• have the same sense (i.e. direction) 
• of the same “type” 

(force ↔ displacement) 
(moment ↔ rotation) 

For a linear, elastic body, superposition applies, so can write: 

q 1 = C11 Q1 + C12 Q2 + C13 Q3 

q i = Cij Qj q 2 = C21 Q1 + C22 Q2 + C23 Q3 

q 3 = C31 Q1 + C32 Q2 + C33 Q3 

or in Matrix Notation: 

q 1  C11 C12 C13  Q1  
      
q 2  = C21 C22 C23  Q2  
   
q 3  C31 C32 C33  Q3 
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Note:	 |  | --> row 
{ } --> column 
[ ] --> full matrix 

or 

{ } = [ ] { }q i Cij Qj

or 

q = C Q~ ~~ 
Cij = Flexibility Influence Coefficient 

and it gives the deflection at i due to a unit load at j 

C12 = is deflection at 1 due to force at 2 

Figure 21.2  Representation of deflection point 1 due to load at point 2 

(Note: Cij can mix types) 
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Very important theorem: 

Maxwell’s Theorem of Reciprocal Deflection 
(Maxwell’s Reciprocity Theorem) 

Figure 21.3  Representation of loads and deflections at two points on an 
elastic body 

q1 due to unit load at 2 is equal to q2 due to unit load at 1 
i.e. C12 = C21 

Generally: 
Cij = Cji symmetric 
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This can be proven by energy considering (path independency of 
work) 

--> Application of Flexibility Influence Coefficients 

Look at a beam and consider 5 points… 

Figure 21.4 Representation of beam with loads at five points 

Beam 

The deflections q1…q5 can be characterized by: 

q 1  C11 C12 C13 C14 C15  Q1  
  

q 2  

C21 C22 L L  M  Q2 
 

      
q 3  =  M O M  Q3  
q 4 

 
 M O M  Q4 

 
     
q 5  C51 L L L C55  Q5  
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Since Cij = Cji, the [Cij] matrix is symmetric 

Thus, although there are 25 elements to the C matrix in this case, 
only 15 need to be computed. 

So, for the different loads Q1….Q5, one can easily compute the q1….q5 
from previous work… 

Example: Cij for a Cantilevered Beam 

Figure 21.5 Representation of cantilevered beam under load 

find: Cij --> deflection at i due to unit load at j 

•	 Most efficient way to do this is via Principle of Virtual Work 
(energy technique) 

• Resort here to using simple beam theory:
2 

E I
d w  

= M x  
dx2 ( )  
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What is M(x)? 

--> First find reactions: 

Figure 21.6  Free body diagram to determine reactions in cantilevered 
beam 

1 

⇒ 
M = -1xj 

V = 1 

--> Now find M(x). Cut beam short of xj: 

Figure 21.7  Free body diagram to determine moment along 
cantilevered beam 
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∑ Mx = 0 + 

⇒ 1 ⋅ x − 1⋅ x + M xj ( ) = 0

⇒ M x( ) = − 1 (x j − x) 
Plugging into deflection equation: 

2 

E I
d w  

= − 1 (x j − x)
dx2 

for EI constant: 

d w  1  x2  
= −  x x  −  + C1d x  E I  j 2  

31  x2 x  
w = −  x j 2 

−  + C x  + C2E I   6  1 

Boundary Conditions: 

@ x = 0 w = 0 ⇒ C2 = 0 

d w@ x = 0 = 0 ⇒ C1 = 0
d x  
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So: 
31  x2 x  

w = − 
E I  


 

x j 2 
− 

6 
 

evaluate at xi: 

1  xi 
3

2  
w = − x x j 2 E I  

 
3 i 

One important note: 

w is defined as positive up, have defined qi as positive down. 
So: 

3 
2qi = − w = 

1 

 

x x j − 
xi 

2 E I   i 3  

⇒ C
EI 

x x  x
ij 

i i = −
 


 

 


 

1 

2 

2 3 
j 

6 
for xi ≤ xj 

Deflection, qi, at xi due to unit force, Qj, at xj 
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--> What about for xi ≤ xj? Does one need to go through this whole 
procedure again? 

No! Can use the same formulation due to the symmetry of Cij 

(Cij = Cji) 

--> Thus far have looked at the influence of a force on a displacement. 
May want to look at the “opposite”: the influence of a displacement 
on a force. Do this via… 

Stiffness Influence Coefficients 
≡ kij 

where can write: 

Q1 = k11 q1 + k12 q2 + k13 q3 

Q 2 = k21 q1 + k22 q2 + k23 q3 

Q 3 = k31 q1 + k32 q2 + k33 q3 
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or write: 

{ } = [ ] { }Q i kij qj

or: 

Q = k q~ ~ ~ 
If compare this with: 

q = C Q~ ~~ 
⇒	 k = C-1 

~ ~  

Fall, 2002 

[ ]−1 
kij[ ] = Cij inverse matrix 

Note: Had a similar situation in the continuum case: 

E = S-1 

~ ~  

elasticity compliance 
(stiffness) (flexibility) 

--> Look at the Physical Interpretations: 
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Flexibility Influence Coefficients


Figure 21.8  Physical representation of flexibility influence coefficients 
for cantilevered beam 

1 unit level 

Cij = displacement at i due to unit load at j 

Note: This is only defined for sufficiently 
constrained structure 
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Stiffness Influence Coefficients 

Figure 21.9  Physical representation of stiffness influence coefficients 
for cantilevered beam 

1 unit displacement 

kij = forces at i’s to give a unit displacement at j and zero 
displacement everywhere else (at nodes) 

(much harder to think of than Cij) 

Note: This can be defined for unconstrained 
structures 
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--> Can find kij by: 
• calculating [Cij] first, then inverting 

+( )i j  minor of−1
k = ij ∆ Cij 

determinant of [Cij] 

Note: k-1 may be singular (indicates “rigid body” modes) 
--> rotation 
--> translation 
--> etc. 

• calculating [kij] directly from individual local [kij] elements and 
adding up for the total system 

Most convenient way 

Note: This latter method is the basis for finite 
element methods 
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