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Return to the simplest system: the single spring-mass… 

This is a one degree-of-freedom system with the governing equation: 

mq̇̇ + k q = F 

First consider… 

Free Vibration 

⇒ Set F = 0 

resulting in: 
mq̇̇ + k q = 0 

The solution to this is the homogeneous solution to the general equation. 

For an Ordinary Differential Equation of this form, know that the solution is 
of the form: 

( )  = ep t  

⇒	 m p2ep t  + k ep t  = 0 
2 ⇒ m p  + k = 0 (in order to hold for all t) 
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2 k 
⇒	 p = − 

m 

⇒ p = ±  i 
k 

m 

where: 

i = − 1 

k 

m 
= ω = natural frequency of single 

degree-of-freedom system 

[rad/sec] 

Important concept that natural frequency = 
stiffness 

mass 

So have the equation: 

( )  = C1 e
+ ω + C2 e

− ω 
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from mathematics, know this is: 

q t( )  = C1 ′sinω t + C2 ′ cosω t general solution 

Now use the Initial Conditions: 

@ t = 0 q = q0 ⇒ C2 ′ = q0 

@ t = 0 q̇ = q̇0 ⇒ C1 ′ =	
q̇0 

ω 
This results in: 

( )  =	
q̇0 sinω t + q0 cosω t 
ω 

with: 
ω = 

k 

m 

This is the basic, unforced response of the system 

So if one gives the system an initial displacement A and then lets go: 
q0 = A 

q̇0 = 0 
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The response is: 
( )  = A cosω t 

Figure 20.1	 Basic unforced dynamic response of single spring-mass 
system 

But, generally systems have a force, so need to consider: 
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Forced Vibration 

The homogeneous solution is still valid, but must add a particular solution 

The simplest case here is a constant load with time…


Figure 20.2  Representation of constant applied load with time


(think of the load applied suddenly ⇒ step function at t = 0) 

The governing equation is: 
mq̇̇ + k q = F0 

The particular solution has no time dependence since the force has no 
time dependence: 

F0qparticular = 
k 
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Now use the homogeneous solution with this to get the total solution: 

F
( )  = C1 sinω t + C2 cosω t + 0 

k

The Initial Conditions are: 

@ t = 0 q = 0 

q̇ = 0 

0q ( )  = 0 ⇒ C = − 
F0 

2 k

q 0˙ ( )  = 0 ⇒ C1 = 0 

So the final solution is: 
F 

q = 0 (1 − cosω t)
k 

with ω = 
k 

m 

Plotting this: 
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Figure 20.3  Ideal dynamic response of single spring-mass system 
to constant force 

Dynamic response 

Static response 

Note that: 

Dynamic response = 2 x static response 
“dynamic magnification factor” - will be larger when 

considering stresses over their static values 

Know this doesn’t really happen (i.e. response does not continue forever) 

What has been left out? 

DAMPING 
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Actual behavior would be… 

Figure 20.4  Actual dynamic response (with damping) of single spring-
mass system to constant force 

rate of damping dependent on 
magnitude of damper (c) 

Have considered a simple case. But, in general forces are 
not simple steps. Consider the next “level”… 

The Unit Impulse 
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An impulse occurs at time t = τ. Such a force is represented by the 

Dirac delta function: F t( )  = δ (t − τ ) 
where: 

δ (t − τ ) = 0 @ t ≠ τ 

δ (t − τ ) → ∞  @ t = τ 

and: 
∞ 

−∞
δ (t − τ ) dt = 1∫ 

Recall: force x time = impulse 

Hence, 
∞ 

−∞ 
g t∫ ( )  δ (t − τ ) dt 

= 0 everywhere but at t = τ 
∞ 

τ= g( )  ∫−∞ δ (t − τ ) dt 

now a constant = 1

with regard to

time
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∞ 
( )  δ (t − τ ) dt = g ( )⇒ ∫−∞ 

g t  τ 

Use this force function in the governing equation: 

mq̇̇ + k q = δ (t − τ ) 
Figure 20.5  Representation of unit impulse force at time τ 

Use Initial Condition of system at rest: 

@ t < τ q = 0 

q̇ = 0 
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To get the result, integrate the equation over the regime where the force 
is nonzero (t = τ  to τ + ε) 

2+ τ ε  τ ε+ + 
⇒	 ∫τ

τ ε  
m

d q  
dt + k ∫τ 

q dt = ∫τ 
δ (t − τ ) dt 

dt2 

use trapezoidal rule 

Trapezoidal Rule: 

B 1
∫A 

q dt = 
2 
[q (B) + q ( A)] × (tB − tA ) 

This gives: 

⇒ m 


 d q  


 

−

 

d q  
 

 + k 

1 [q (τ + ε) + q ( )]τ ε = 1 
 dt 

τ ε  
 dt 

τ  2 
+

= 0 goes to zero 
= 0 from Initial from since ε→0 

Condition Initial 
Condition 

All this results in: 
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d q  

dt m 

 


 

 


 = 

+τ ε  

1 

q( )  = 
+τ ε  

0 

A unit impulse at time τ is thus a free vibration problem with an initial 
velocity (equal in magnitude to the inverse of the mass) 

Note: Units are consistent since the integral of δ(t - τ) is a 
force x time. So: 

mass × 
length

2 × time 
 d q   Force × time (time)

= =

 dt 

 mass mass


= 
length 

= [velocity]
time 

So use the homogeneous solution: 
( )  = C1 sinω t + C2 cosω t 

but: 
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• shift the time {t’ = 0 @ t = τ ⇒ (t - τ)} 

•	 use: 1 
q t  = τ ) =˙ ( 

m 

q t  = τ ) = 0( 

Thus: 
( )  = C1 sinω (t − τ ) + C2 cosω (t − τ ) 

Initial Conditions give: 

q t  = τ ) = 0 ⇒ C2 = 0( 
1 1 1 

q t  = τ ) = ⇒ = C1ω ⇒ C1 = 
m ω 

˙ ( 
m m 

Thus: 
1

( )  = sin ω (t − τ )
m ω 

with: 

ω = 
k 

m 
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Figure 20.6  Dynamic response of single spring-mass system to unit 
force impulse at time τ 

Summarizing…the response to a unit impulse at t = τ is: 
1

( )  = sin ω (t − τ ) for t ≥ τ 
m ω 
0 for t ≤ τ 

For an impulse of arbitrary magnitude Io, multiply the solution by Io 
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For convenience, write this particular response as: 

h (t - τ) = response to unit impulse 

Now, how does one progress to an… 

Arbitrary Force 

Consider some arbitrary force with time:


Figure 20.7  Representation of arbitrary force with time


Break the force into/represent it as a series of impulses:
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Figure 20.8  Representation of arbitrary force with time as series of 
impulses 

over any interval ∆τ: 

Impulse = F (τ) δ (t - τ) 

The response to any particular impulse is: 

q t( ) = F (τ ) ∆τ h(t − τ ) 

where h(t - τ) is characteristic response of system to an impulse. 

So the total response is the summation of the responses to all the 
impulses. In the limit, there are infinite impulses leading to the integral: 

t 
q t  τ( )  = ∫0 

F ( )  h (t − τ ) dτ 
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This is known as: 
Duhamel’s integral or 
The convolution integral or 
The linear superposition integral 

This is a general case. For the particular single spring-mass system: 

1 t 
( )  = 

m ω ∫0 
F ( )  sin ω (t − τ ) dτq t  τ 

response to arbitrary F(t) 

Additional initial conditions (velocity and displacement) can be added to 
this through the homogeneous solution to give: 

0( )  = 
m 

1 
ω ∫0 

t
F ( )  sin ω (t − τ ) dτ + 

q̇ ( )
sinω tq t  τ 

ω 

0+ q ( )cosω t 

Of all the arbitrary forces, there is one form of particular 
interest: 
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Sinuisoidal Force 

This is an important basic input 

• motors 
• helicopters 
• other cyclical cases 

Use the integral previously developed for the case of the basic force: 

F t( )  = F sin Ω to

(use capital Ω to differentiate from system natural 
frequency) 

Ω - forcing frequency

ω - system (response) natural frequency
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Figure 20.9 Representation of sinusoidal forcing function 

The solution is thus: 
t 

q t  
mω ∫0 

sin Ωτ sinω (t − τ ) dτ( ) = 
F0 

One can perform this integral to get the solution 

or 

Go back to the original Ordinary Differential Equation: 

mq̇̇ + k q = Fo sin Ω t 
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The overall solution is: 
q t( )  = C1 sinω t + C2 cosω t + qparticular 

homogeneous solution 

Can see: 

qparticular = C3 sin Ω t 

Plugging this in the governing Ordinary Differential Equation: 

− m Ω2 C3 sin Ω t + k C3 sin Ω t = Fo sin Ω t 

F Fo o=⇒ C3 = − m Ω2 + k k 1 − Ω2 m  
 k  

use: 

F
oω = 
k 
m 

⇒ C = 3  Ω2 
k 1 −

ω 2 


 

This gives the overall solution of: 

Paul A. Lagace © 2001 Unit 20 - 21 



MIT - 16.20 Fall, 2002 

F 
q t( )  = C sinω t + C cosω t + o 

Ω2  
sin Ω t

1 2 

Starting transient 
with natural 
frequency (this will 
eventually die out 
due to damping) 

k 1 −
ω 2 


 

Steady state 
response following 
frequency of 
forcing function 

Now, using the Initial Conditions: 

q (0) = 0 ⇒ C2 = 0 

F Ω q̇ (0) = 0 ⇒ ω C1 +  
o 

Ω2  
= 0 

k 1 −
ω 2  

Ω
F
o 

⇒ C1 = −  
ω
Ω2 

k 1 −
ω 2 


 

Thus, the final solution is: 
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q t  
F 

k 

t o( )  sin sin= 
−

 

 

 

 

− + 
 

 
 

1 
2 

2 

Ω 

Ω 
Ω 

ω 
ω 

ω t

starting steady 
transient state 

Notes: 
F o•	  = static response
k 

1 
• 

Ω2  
= Dynamic Magnification Factor (DMF)

 
1 −

ω 2 




• For low Ω, response approximately static 
• For high Ω, response goes to zero (waves!) 

• For medium Ω….DMF varies. Medium depends on ω which is 
system structural response 

• At ω = Ω, DMF → ∞  This is known as “Resonance” 
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Figure 20.10  Dynamic Magnification Factor versus ratio of frequency of 
forcing function to system natural frequency 

waves 

Thus, if one excites a system at/near its natural frequency, very large 
responses result (damping and nonlinearities keep the response from 
going to infinity) 
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Examples: Flutter (window blinds in wind!)


Rule of Thumb: stay away from natural frequency(ies) of 
system. 

Further Note: an arbitrary force can be broken down into a 
sinusoidal series. If any of the force components of 
importance have a frequency near a system natural 
frequency ⇒ Trouble! 

The next task is to take the basic points learned for this 
single degree-of-function system and extend them to a 
multiple degree-of-function system. 

But first need to see how one can accomplish this… 
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