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Thus far have considered only static response. However, 
things also move, this includes structures. 

Can actually identify three “categories” of response: 

A. (Quasi) - Static [“quasi” because the load must first be applied] 
B. Dynamic 
C. Wave Propagation 

What is the key consideration in determining which regime one is in? 
--> the frequency of the forcing function 

Example: Mass on a Spring 

Figure 19.1  Representation of mass on a spring 
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A) Push very slowly 

Figure 19.2  Representation of force increasing slowly with time 

t = time 

The response is basically determined by: 

F = k q 
F t  

⇒	 ( )  = 
( )  

≈ 
F 

k k 

Figure 19.3  Deflection response versus time for mass in spring with 
loads slowly increasing with time 

(F/k) at any point 
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B) Push with an oscillating magnitude 

Figure 19.4  Representation of force with oscillating magnitude 

The response also oscillates 

Figure 19.5  Representation of oscillating response 
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C) Whack mass with a hammer 

⇒ Force is basically a unit impulse 

Figure 19.6  Representation of unit impulse force 

Force has very high frequencies 

Response is (structural) waves in spring with no global 
deflection 
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--> Represent this as 

Figure 19.7 Representation of regions of structural response versus 
frequency of forcing function 

(Quasi) - Static Dynamics Wave Propagation 

Static 

What determines division points between regimes? 
--> borderline between quasi-static and dynamic is related to natural 

frequency of structure. Depends on: 

• structural stiffness 
•	 structural “characteristic length” 

--> gives natural frequency of structure 

--> borderline between dynamic and waves is related to speed of 
waves (sound) in material. Depends on: 

• modulus 
• density speed = E 

ρ 
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--> These are not well-defined borderlines 
• depends on specifics of configuration 
• actually transition regions, not borders 
• interactions between behaviors 

So illustration is: 

Figure 19.8 Representation of regions of structural response versus 
frequency of forcing function 

(Structural) Wave 
(Quasi) - Static Dynamics Propagation 

Static  f(natural f(speed of 
frequency of waves in 
structure) material) 

= region of transition 

Paul A. Lagace © 2001 Unit 19 - 8 



MIT - 16.20 Fall, 2002 

Statics -- Unified and 16.20 to date

Waves -- Unified

(Structural) Dynamics -- 16.221 (graduate course).


Look at what we must include/add to our static considerations 

Consider the simplest ones… 

The Spring-Mass System 

Are probably used to seeing it as:

Figure 19.9  General representation of spring-mass system
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For easier relation to the structural configuration (which will later be 
made), draw this as a rolling cart of mass attached to a wall by a spring: 

Figure 19.10  Alternate representation of spring-mass system 

[Force/length] 

k 

• The mass is subjected to some force which is a function of time 

• The position of the mass is defined by the parameter q 

• Both F and q are defined positive in the positive x-direction 
Static equation: F = kq 

• What must be added in the dynamic case? 
Inertial load(s) = - mass x acceleration 

In this case: 
inertial load = − mq̇̇ 
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where: 
d•( ) = 
d t  

(derivative with respect to time) 

Drawing the free body diagram for this configuration: 
Figure 19.11  Free body diagram for spring-mass system 

∑ F = 0 ⇒ F − k q − m ̇  ̇ = 0 

⇒ mq̇̇ + k q = F t( )  
Basic spring-mass 
system (no damping) 

This is a 2nd order Ordinary Differential Equation in time. 

When the Ordinary/Partial Differential Equation is in space, need 
Boundary Conditions. Now that the Differential Equation is in time, 
need Initial Conditions. 
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2nd Order ⇒ need 2 Initial Conditions 

Here: 

t = 0 q = 0 

˙ q = 0 

@ 
some initial values given (may often be zero) 

Will look at how to solve this in the next unit. 

There is another consideration that generally occurs in real systems --
DAMPING. 

For the spring-mass system, this is represented by a dashpot with a 
constant c which produces a force in proportion to the velocity: 

Figure 19.12 Representation of spring-mass system with damping 

[Force/length] 

[Force/length/time] 

q

q̇
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Here the free body diagram is: 
Figure 19.13  Free body diagram of spring-mass system with damping 

∑ F = 0 

⇒ mq̇̇ + c q̇ + k q = F t( )  

Basic spring-mass system 
(with damping) 

From here on: neglect damping 

Can build on what has been done and go to a… 
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Multi-Mass System 

For example, consider two masses linked by springs: 

Each mass has stiffness, (ki) mass (mi) and force (Fi) with 
associated deflection, qi 

Figure 19.14  Representation of multi-mass (and spring) system 

Consider the free body diagram for each mass: 
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• Mass1 

Figure 19.15  Face body diagram of Mass 1 in multi-mass system 

∑ F = 0 

yields: 

F1 + k2 (q2 − q1 ) − k q − m1 1  = 01 1  ˙̇ 
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• Mass 2 

Figure 19.16  Free body diagram of Mass 2 in multi-mass system 

∑ F = 0 

yields: 

F2 − k2 (q2 − q1 ) − m2 ˙̇ 2 = 0 

Rearrange and unite these as (grouping terms): 

m q̇̇ + (k1 + k2 )q1 − k2 q2 = F11 1  

m q2 − k2 q1 + k q2 = F22 ˙̇ 2 

--> Two coupled Ordinary Differential Equations 
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Write in matrix form: 

m1 0  ̇ 1̇  (k1 + k2 ) −k2 q1   F1  

 0 m2 ˙̇ 2  
  =     + 


 −k2 k2 q2  F2  

or: 
mq̇̇ + kq = F 
~~ ~~ ~ 

mass stiffness matrix 
matrix 

Note that the stiffness matrix is symmetric (as it has been in all 
other considerations) 

kij = kji 

This formulation can then be extended to 3, 4….n masses with 

mi = mass of unit i 
ki = stiffness of spring of unit i 
qi = displacement of unit i 
Fi = force acting on unit i 

etc. 
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Will next consider solutions to this equation. But first talk 
about why these considerations are important in structures. 

First issue -- what causes such response are: 

Dynamic Structural Loads 

Generic sources of dynamic loads: 

• Wind (especially gusts) 
• Impact 
• Unsteady motion (inertial effects) 
•	 Servo systems 

• 
• 
• 

How are these manifested in particular types of structures? 
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Aircraft


• Gust loads and turbulence flutter 

(aeroelasticity is interaction of aerodynamic, elastic and 
inertial forces) 

• Servo loads (and aero loads) on control surfaces 

Spacecraft 
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Automobiles, Trains, etc. 

Civil Structures 

Earthquakes and Buildings 

What does this all result in?


A response which is comprised of two parts:

• rigid-body motion 
• elastic deformation and vibration of structure 
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Note that:


•	 Peak dynamic deflections and stresses can be several times that 
of the static values 

•	 Dynamic response can (quickly) lead to fatigue failure 
(Helicopter = a fatigue machine!) 

• Discomfort for passengers 
(think of a car without springs) 

So there is a clear need to study structural dynamics 

Before dealing with the continuous structural system, first go back to the 
simple spring-mass case and learn: 

• Solutions for spring-mass systems 
•	 How to model a continuous system as a discrete spring-mass 

system 

then… 

• Extend the concept to a continuous system 
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