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Thus far have considered only static response. However,
things also move, this includes structures.

Can actually identify three “categories” of response:

A. (Quasi) - Static [“quasi” because the load must first be applied]
B. Dynamic
C. Wave Propagation

What is the key consideration in determining which regime one is in?
--> the frequency of the forcing function

Example: Mass on a Spring

Figure 19.1 Representation of mass on a spring
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A) Push very slowly

Figure 19.2 Representation of force increasing slowly with time
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The response is basically determined by:

F = kq
FO _F

= q(t) = " P

Figure 19.3 Deflection response versus time for mass in spring with
loads slowly increasing with time
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B) Push with an oscillating magnitude

Figure 19.4 Representation of force with oscillating magnitude
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The response also oscillates

=

Figure 19.5 Representation of oscillating response
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C) Whack mass with a hammer

=> Force is basically a unit impulse

Figure 19.6 Representation of unit impulse force
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Force has very high frequencies

Response is (structural) waves in spring with no global
deflection
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--> Represent this as

Figure 19.7 Representation of regions of structural response versus
frequency of forcing function
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What determines division points between regimes?

--> porderline between quasi-static and dynamic is related to natural
frequency of structure. Depends on:

e structural stiffness
« structural “characteristic length”
--> gives natural frequency of structure

--> porderline between dynamic and waves is related to speed of
waves (sound) in material. Depends on:

 modulus
e density speed = E/o
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--> These are not well-defined borderlines
» depends on specifics of configuration
e actually transition regions, not borders
* Interactions between behaviors

So illustration is:

Figure 19.8 Representation of regions of structural response versus
frequency of forcing function
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Statics -- Unified and 16.20 to date

Waves -- Unified
(Structural) Dynamics -- 16.221 (graduate course).

Look at what we must include/add to our static considerations
Consider the simplest ones...

The Spring-Mass System

Are probably used to seeing it as:
Figure 19.9 General representation of spring-mass system
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For easier relation to the structural configuration (which will later be
made), draw this as a rolling cart of mass attached to a wall by a spring:

Figure 19.10 Alternate representation of spring-mass system
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* The mass is subjected to some force which is a function of time
* The position of the mass is defined by the parameter g

* Both F and q are defined positive in the positive x-direction
Static equation: F = kq
 What must be added in the dynamic case?

Inertial load(s) = - mass x acceleration
In this case:
inertial load = - mq@
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where:

(") = % (derivative with respect to time)

Drawing the free body diagram for this configuration:
Figure 19.11 Free body diagram for spring-mass system
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b Basic spring-mass
system (no damping)

This is a 2nd order Ordinary Differential Equation in time.
When the Ordinary/Partial Differential Equation is in space, need

Boundary Conditions. Now that the Differential Equation is in time,
need Initial Conditions.
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2nd Order = need 2 Initial Conditions
Here:

@ t=20 q = qo
q = qo
Will look at how to solve this in the next unit.

There is another consideration that generally occurs in real systems --
DAMPING.

some initial values given (may often be zero)

For the spring-mass system, this is represented by a dashpot with a
constant ¢ which produces a force in proportion to the velocity:

Figure 19.12 Representation of spring-mass system with damping
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Here the free body diagram is:
Figure 19.13 Free body diagram of spring-mass system with damping
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A
Basic spring-mass system
(with damping)

From here on: neqglect damping

Can build on what has been done and go to a...
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Multi-Mass System

For example, consider two masses linked by springs:

Each mass has stiffness, (k) mass (m;) and force (F;) with
associated deflection, g

Figure 19.14 Representation of multi-mass (and spring) system
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Consider the free body diagram for each mass:
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e Massl

Figure 19.15 Face body diagram of Mass 1 in multi-mass system
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yields:

R+ k(g -q) - kg - mG =0
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e Mass 2

Figure 19.16 Free body diagram of Mass 2 in multi-mass system
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F, - k(- a) - m@, = 0

Rearrange and unite these as (grouping terms):
mé + (k+k)a - ko, = K
mg - kg + kg = F

--> Two coupled Ordinary Differential Equations
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Write in matrix form:

o wffe [ el - fe)

or.
mg + kg = F

mg + K
mass  stiffness matrix
matrix

Note that the stiffness matrix is symmetric (as it has been in all
other considerations)

kij = kji
This formulation can then be extended to 3, 4....n masses with

m, = mass of unit |
k; = stiffness of spring of unit i
g; = displacement of unit |
F, = force acting on unit i
etc.
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Will next consider solutions to this equation. But first talk
about why these considerations are important in structures.

Fall, 2002

First issue -- what causes such response are:

Dvnamic Structural Loads

Generic sources of dynamic loads:

 Wind (especially gusts)
 Impact

 Unsteady motion (inertial effects)
e Servo systems

How are these manifested in particular types of structures?

Paul A. Lagace © 2001
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Aircraft
e Gust loads and turbulence flutter

(aeroelasticity is interaction of aerodynamic, elastic and
inertial forces)

« Servo loads (and aero loads) on control surfaces

Spacecraft
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Automobiles, Trains, etc.

Civil Structures

Earthquakes and Buildings

What does this all result in?

A response which is comprised of two parts:
* rigid-body motion
e elastic deformation and vibration of structure
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Note that:

 Peak dynamic deflections and stresses can be several times that
of the static values

 Dynamic response can (quickly) lead to fatigue failure
(Helicopter = a fatigue machine!)

» Discomfort for passengers
(think of a car without springs)

So there is a clear need to study structural dynamics

Before dealing with the continuous structural system, first go back to the
simple spring-mass case and learn:

» Solutions for spring-mass systems

 How to model a continuous system as a discrete spring-mass
system

then...

 Extend the concept to a continuous system
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