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Have dealt, thus far, with perfect columns, loading eccentricities, and 
beam-columns. There are, however, many more issues in 
buckling/(static) structural instability, most of which will try to touch on. 

(a) Buckling versus Fracture 

Have looked at columns that are long enough such that they buckle. 
However, it is possible that the material compressive ultimate stress may be 
reached before the static instability occurs. 

Consider short/”squat” column (saw in Unified) 

Figure 18.1 Representation of short column under compressive load 
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P
σ = 

A 

If σ = σcompressive ultimate before P = Pcr, then failure occurs by material 
failure in compression 

“squashing” 

Using the “slenderness ratio” previously defined: 

P π 2 Ecrσ = = cr ρ ′ 
2A (l ) 

where: 

l
l′ = 

c 

“define” a column by its slenderness ratio and can plot the behavior and 
“failure mode” of various columns… 
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Figure 18.2  Summary plot showing general behavior of columns 
based on stress level versus slenderness ratio 

actual 
behavior 

Euler curve 

compressive yield 

Regions of values depend on E and σcu 

What happens in the transition region? 
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(b) Progressive Yielding 

Figure 18.3  Typical stress-strain plot for a ductile metal (in compression) 

As the column is loaded, there is some deflection due to slight 
imperfections. This means the highest load is at the outer part of the 
beam-column. 
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Figure 18.4  Representation of region of highest stress in cross-section 
of beam-column 

highest compressive stress 

Thus, this outer part is the first part to yield. As the material yields, the 
modulus decreases. 

Figure 18.5  Representation of tangent modulus 

tangent modulus 

This changes the location of the centroid…
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Figure 18.6  Representation of change in location of centroid of cross-
section due to local yielding 

lower modulus, ET < E 

E 

This continues and it may eventually “squash” or buckle (or a combination) 

--> See Rivello 14.6 

(c) Nonuniform Beam-Columns 

Have looked only at beams with uniform cross-sectional property EI. Now 
let this vary with x (most likely I, not E). 

Example: Tapered section 
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Figure 18.7 Representation of beam-column with tapered cross-section 

EI = EI(x) 

Thus, the governing equation is: 
2 2d 2  

EI 
d w   

+ P
d w  

= 0 
dx2 

 
dx2  dx2 

must keep this “inside” the derivative 

Solve this via numerical techniques: 

• Energy Methods 
• Galerkin 
• Finite Element Method 
• Finite Difference 
•	 Rayleigh-Ritz 

--> See Rivello 14.3 
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(d) Buckling of Plates 

Thus far have considered a “one-dimensional” problem (structural property 
of main importance is l, besides EI). Now have a two-dimensional 

structure (a “plate”): 

Figure 18.8  Representation of plate under compressive load 

Pin-sliding 

Free 
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The Poisson’s ratio enters into play here. For an isotropic plate get: 
π 2 EI

P = cr l2 (1 −ν 2 ) 
where: l = a 

I = 1/12 bh3 

2 

⇒ σ = 
Pcr = 

π 2 E  h 
cr bh 12 1 −ν 2  a 

whereas the column buckling load is 

P = 
π 2E I  

= 
π 2E A h2 

⇒ σ = 
π 2E  h 

2 

cr 
l2 l212 cr 12  l 

The buckled shape will have components in both directions: 

Figure 18.9  Representation of deflection of buckled square plate with all 
sides simply-supported 
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π π 
w = w sin 

m x  
sin 

n y  
mn a b 

--> can have contributions of many modes. Will depend on 
boundary conditions on all four sides. 

--> See Rivello, Ch. 15 

Even more complicated for orthotropic plates as the modulus varies in 
the two directions. 

(must also look at buckling due to shear loads) 

--> See Jones, Ch. 5 

Note: for some “weird” anisotropic plates with shear couplings, can 
get buckling under tension. 

(Key question: Is there an induced compressive stress in 
some direction?) 

think back to basic definition of instability… 
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(e) Cylinders 

(“thin-walled things”, like shells) 

Have dealt with “global” instabilities. However, buckling can also be a 
“local” instability. 

Figure 18.10  Representation of crippling in thin cylinder under axial 
compressive load 

local “crippling” 

total axial load: 

P = σ (2π) Rh 

for an isotropic cylinder: 

σ = 0.606 E
h 

cr(linear) R 
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The actual load where the local instability sets in is less than that 
predicted from linear theory due to imperfections in both geometry and 
loading: 

.σ cr( actual ) 
≈ (0 15 to 0.9)σ cr( linear ) 

--> See Rivello, Ch. 15 

(f) Reinforced Plates 

A common design in aerospace structures (and many other structures) is 
to reinforce a plate with stiffeners: 

Figure 18.11  Representation of plate with stiffeners 
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The buckling can take place at several levels 

• buckling of panels between stiffness 
• buckling of “parts” of stiffeners (e.g., flange, web) 
• global instability 

This can occur on a progressive basis. 

Analysis often uses only stiffness as carrying the load for buckling (axial 
load) or talk about “effective width” of skin 

(this was previously discussed in talking about general shell beams 
and holds true for buckling) 

(g) Post-buckling 

When talked about buckling, talked about bifurcation. In that case w --> ∞ 
as P --> Pcr (with imperfections). In reality, a structure can carry load after 
buckling (“post-buckling” behavior). 
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Figure 18.12 Representation of post-buckling behavior via load-
deflection plot 

actual behavior w/post-
buckling capability 

perfect linear behavior 

behavior with imperfection 

The critical assumption which breaks down is: 

SMALL DEFORMATIONS 

Must now account for geometrical nonlinear effects. 

(Note: material nonlinear effects will also enter in as approach σcu) 
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Consider: Post-Buckling of a beam-column 
(the issues are the same for a plate) 

Figure 18.13 Representation of post-buckling of a beam-column 

For large deflections, the moment-curvature equation is: 

M s( )  = E I 
dθ 
ds

where: 
dθ 

= curvature 
ds 

Look at a beam section: 
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dw 
= sinθ 

ds 

differentiating: 
2d w  dθ 

= cosθ 
ds2 ds 

or: 
2dθ 1 d w  

= 
ds cosθ ds2 

with: 

d x  
cosθ = = 

− ds dw2 2 

= 
ds ds 

− 
 

 
 

 

 
 

dw 

ds 

2 

1 

or: 

cosθ = sin− 1 2 θ 
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So: 

curvature = 

− 
 


 

 


 

d 

ds dw 

ds 

d w  

ds 

θ 1 

1 
2 

2 

2 = 

For “moderate” angles θ: (via expansion) 
2 2dθ 

= 
 
1 + 

1  dw  + H.O.T. 

 

d w  

ds  2  ds   ds2 

nonlinear term 

In the absence of any primary moment, the moment at any point s is due 
to the deflection w at that point: 

Figure 18.14 Representation of resultants along the beam-column 

+ ∑ M = 0 
⇒ M + Pw = 0 ⇒ M = -Pw 
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So the basic Post-Buckling equation becomes: 
2 2 1  dw   d w  P 

1 + 
2  ds  

+ H.O.T.
 ds2 + 

E I  
w = 0 

 

This can be solved via 
• Numerical Techniques 
• Energy Method 

--> Effect appears to “stiffen” the behavior 

Consider one (numerical) technique known as the… 

Galerkin Method 

1. Assume a mode that satisfies the boundary conditions 

w = q1  sin πs/l 

unknown assumed mode shape satisfies all 
coefficient boundary conditions 
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2. Integrate a weighted average of the solution and the Ordinary 
Differential Equation 

(Are minimizing the “residuals”) 
l s Differential 
∫0 

q1 sin 
π

  ds = 0 
l equation  

assumed 
mode shape 

2 2
  d w  P 

+ wHere: 1 
1   dw 


 
+ 

2  ds  
 ds2 E I  

This gives: 

π 2
3 π

4 Pl
− q1 − q1 16 l3 + q1 = 0

2 l 2 E I  

Solving: 

 π 4
2 π 2 Pl  

q1 

16 l3 q1 + 

2 l 
− 

2 E I  
 = 0 
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Get: 
q1 =• 

2 
• q1 = 

q1 = 

Fall, 2002 

0 (trivial solution: w = 0) 
28l2  Pl  

π 2 
π

2 E I  
− 1

 
this latter gives: 

0.903 l 

Note: q1 only for P/Pcr > 1 

P 

Pcr 

1 − 

Plotting P/Pcr vs. wc (= q1) gives: 

Figure 18.15  Representation of load versus center deflection for post-
buckled beam-column based on Galerkin Method 
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For wc / l > 0.3, include more terms: 
2 4


1  dw  3  dw 
1 +   +   + K 

2  ds  8  ds  

See: Rivello, Timoshenko & Gere 

--> Postscript: Buckling and Failure 

When is a structure that buckles considered to have failed? 

• Recall discussion of “failure” at beginning of term. 
•	 There is not (physically…only mathematically) “a” point of 

buckling. What happens is that deflection increases with load 
very rapidly. 

•	 If failure is deflection-based, look at deflection; if stress/strain-
base, look at that… 
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Must consider: 

•	 pre-buckling behavior: imperfections cause deflections and 
stresses. These may cause failure before  “buckling” 

•	 post-buckling behavior: “extra” stiffening at large deflections 
may result in ability to carry deflections and stresses such that 
failure is after “buckling” 
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