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Thus far have considered separately: 
• beam -- takes bending loads 
• column -- takes axial loads 

Now combine the two and look at the “beam-column” 

(Note: same geometrical restrictions as on others: 
l >> cross- sectional dimensions) 

Consider a beam with an axial load (general case): 

Figure 17.1  Representation of beam-column 

Fall, 2002 

(could also have py for 
bending in y direction) 

Consider 2-D case:
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Cut out a deformed element dx: 

Figure 17.2  Loads and moment acting on deformed infinitesimal 
element of beam-column 

Assume small angles such that: 

sin 
dw 

≈ 
dw 

d x  d x  

dw 
cos ≈ 1 

d x  
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Sum forces and moments: 

+ 
• ∑ Fx = 0 : 

dF
− F F+ +  dx + px dx 

d x  
2 

− S 
d w  

+ 
 

S + 
d S  

dx

 

 

d w  
+ 

d w
dx
 
= 0 

d x   d x    d x  d x2  

This leaves: 
2dF  d S d w  

S
d w  

dx + px dx +  + 2  dx + H O T. = 0

(dx)2 

. .  
d x   d x d x  d x   

⇒ 
dF 

dx 
p

d 

d x  
S 

d w  

d x  x = − 
 

 
 

 

 
− (17-1) 

new term 
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• ∑ Fz = 0 + : 

2 

− F
d w  

+ 
 

F + 
dF 

dx

 

 

d w  
+ 

d w
dx
 

d x   d x    d x  d x2  

 dS  
+ S −  S + dx + pz dx = 0 

 d x   

This results in: 

dS 

dx 
p

d 

dx 
F 

dw

dx z =  
 

 
 + (17-2) 

new term 

• ∑ My = 0 + : 

d M  dx
− M + M + dx + pz dx 

d x  2 
dw d x   dS  

− p dx −  S + dx dx = 0x d x  2  d x  

(using the previous equations) this results in: 
Paul A. Lagace © 2001 Unit 17 - 5 



MIT - 16.20
 Fall, 2002 

d M  
= S (17-3)

d x  

Note: same as before (for Simple Beam Theory) 

Recall from beam bending theory: 
2


M = EI 
d w  

(17-4)

dx2


Do some manipulating - place (17-4) into (17-3): 
2


S = 
d 

 EI 
d w  


dx  dx2  
(17-5)


and place this into (17-2) to get: 

2
d 2  
EI 

d w  

dx2 

 
dx2 

 − 
d 
 F 

d w  

 
= pz (17-6)


dx  d x   

Basic differential equation for Beam-Column --
(Bending equation -- fourth order differential equation) 
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--> To find the axial force F(x), place (17-5) into (17-1): 
2d F  

= − px − 
d  d w  d  

EI 
d w    

d x  dx 
 d x  d x  


 dx2   

For w small, this latter part is a second order term in w and 
is therefore negligible 

Thus: 
dF 

= − px (17-7)
d x  

Note: Solve this equation first to find F(x) 
distribution and use that in equation (17-6) 

Examples of solution to Equation (17-7) 

• End compression Po 

Figure 17.3 Simply-supported column under end compression 

px = 0 
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dF 

d x  
= 0 ⇒ F = C1 

find C1 via boundary condition @x = 0, F = -Po = C1 

⇒ F = -Po 

• Beam under its own weight 

Figure 17.4 Representation of end-fixed column under its own weight 

px = -mg 
dF 

= +  mg ⇒  F = mgx + C1d x  

boundary condition: @ x = l, F = 0 

So: mgl + C1 = 0 ⇒  C1 = -mgl 
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⇒ F = -mg (l - x) 

• Helicopter blade 
Figure 17.5  Representation of helicopter blade 

(radial force due to rotation) 

similar to previous case 

Once have F(x), proceed to solve equation (17-6). Since it is fourth 
order, need four boundary conditions (two at each end of the beam-
column) 

--> same possible boundary conditions as previously enumerated 

Notes: 

• When EI --> 0, equation (17-6) reduces to: 

−	
d 

 F 
d w  


 
= pzdx  d x   

this is a string  (second order ⇒ only need two boundary conditions 
-- one at each end) 
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(also note that a string cannot be clamped 
since it cannot carry a moment) 

•	 If F = 0, get:

2
d 2  

EI
d w   

= pzdx2 
 

dx2 
 

and for EI constant:

4


EI 
d w  

= pz (basic bending equation)

dx 4


• For pz = 0, EI constant, and F constant (= -P), get: 
4 2


EI
d w  

+ P
d w  

= 0 (basic buckling equation)

dx 4 dx2


Buckling of Beam-Column 

Consider the overall geometry (assume beam-column initially straight) 
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Figure 17.6  Representation of general configuration of beam-column 

Cut the beam-column: 

Figure 17.7  Representation of beam-column with cut to determine 
stress resultants 

∑ M = 0 : Μ − Μ primary + P w  = 0 

due to transverse loading secondary moment (due to 
deflection) 
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gives: 
2 

Μ = E I
d w  

= Μ primary − P w  
dx 2 

for transverse loading: 

2d 2  
EI 

d w  
− 

d  
F 

dw 

 
= pzdx2  dx2 

 
d x  

 
d x   

integrate twice with F = P = C1 

2 

EI
d w  

+ Pw = Mprimarydx2 

same equation as by doing equilibrium 

Solve this by: 

• getting homogenous solution for w 
• getting particular solution for Mprimary 

• applying boundary condition 
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Figure 17.8  Representation of moment(s) versus applied load for 
beam-column 

large moment! 

Examples 

• “Old” airplanes w/struts 
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• Space structure undergoing rotation 

inertial 
loading 

Final note: The beam-column is an important concept and the moments 
in a beam-column can be much worse/higher than beam 
theory or a perfect column alone 
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