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Now consider the case of compressive loads and the 
instability they can cause. Consider only static  instabilities 
(static loading as opposed to dynamic loading [e.g., flutter]) 

From Unified, defined instability via: 

“A system becomes unstable when a negative stiffness overcomes 
the natural stiffness of the structure.” 

(Physically, the more you push, it gives more and builds on 
itself) 

Review some of the mathematical concepts. Limit initial discussions to 
columns. 

Generally, there are two types of buckling/instability 

• Bifurcation buckling 
• Snap-through buckling 
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Bifurcation Buckling 

There are two (or more) equilibrium solutions (thus the solution path 
“bifurcates”) 

from Unified… 

Figure 16.1  Representation of initially straight column under 
compressive load 
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Figure 16.2  Basic load-deflection behavior of initially straight column 
under compressive load 

Actual behavior 

Note: Bifurcation is a mathematical concept. The manifestations 
in an actual system are altered due to physical 
realities/imperfections. Sometimes these differences can 
be very important. 

(first continue with ideal case…) 

Perfect ABC - Equilibrium position, but unstable 
behavior BD - Equilibrium position 

There are also other equilibrium positions 

Imperfections cause the actual behavior to only follow this as 
asymptotes (will see later) 
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Snap-Though Buckling


Figure 16.3  Representation of column with curvature (shallow arch) 
with load applied perpendicular to column 

Figure 16.4  Basic load-deflection behavior of shallow arch with 
transverse load 

arch “snaps through” to F 
when load reaches C 

Thus, there are nonlinear load-deflection curves in this behavior
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For “deeper” arches, antisymetric behavior is possible


Figure 16.5  Representation of antisymetric buckling of deeper arch 
under transverse load 

(flops over) before snapping through 

Figure 16.6 Load-deflection behavior of deeper arch under transverse 
load 

ABCDEF - symmetric snap-
through 

ABF - antisymmetric behavior 

A

D 
E 

• 
• 

• 
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Will deal mainly with… 

Bifurcation Buckling 

First consider the “perfect” case: uniform column under end load. 

First look at the simply-supported case…column is initially straight 

• Load is applied along axis of beam 
•	 “Perfect” column ⇒ only axial shortening occurs (before 

instability), i.e., no bending 

Figure 16.7 Simply-supported column under end compressive load 

EI = constant
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Recall the governing equation: 
4 2 

EI
d w  

+ P
d w  

= 0 
dx 4 dx2 

--> Notice that P does not enter into the equation on the 
right hand side (making the differential equation 
homogenous), but enters as a coefficient of a linear 
differential term 

This is an eigenvalue problem. Let: 
λ xw = e 

this gives: 

λ4 + 
P 

λ2 = 0 
EI 

⇒ λ = ±  
P 

EI  
i 0, 0 

repeated roots ⇒ need to look for 
more solutions 

End up with the following general homogenous solution: 

w = Asin 
P 

EI  
x + B cos 

P 

EI  
x + C + D x 
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where the constants A, B, C, D are determined by using the 
Boundary Conditions 

For the simply-supported case, boundary conditions are: 

@ x = 0 w = 0 
2 

M = E I
d w  

= 0 
dx2 

@ x = l w = 0 

M = 0 

From: 

w(x = 0) = 0 ⇒ B + C = 0 
B = 0 

⇒ 
M(x = 0) = 0 ⇒ − E I  

P
B = 0 C = 0 

E I  

w(x = l) = 0 ⇒ Asin 
P 

EI  
l + Dl = 0 

⇒ D = 0 

M(x = l) = 0 ⇒ − EI 
P 

Asin 
P 

EI  
l = 0 

EI 
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and can see that: 

A P  sin 
P 

EI  
l = 0 

This occurs if: 

• P = 0 (not interesting) 
• A = 0 (trivial solution, w = 0) 

• sin 
P 

EI  
l = 0 

⇒ 
P 

EI  
l = nπ 

Thus, the critical load is: 

2 2n π EI
P = 

l2 

associated with each is a shape (mode) 
n xπ 

w = Asin 
l
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A is still undefined (instability ⇒ w --> ∞) 

So have buckling loads and associated mode shapes 

Figure 16.8  Representation of buckling loads and modes for simply-
supported columns 

2nd mode 

1st mode 

P2 = 4P1 

The lowest value is the one where buckling occurs: 

P = 
π 2 EI Euler buckling load 

cr l2 
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The higher loads can be reached if the column is “artificially 
restrained” at lower bifurcation points. 

Other Boundary Conditions 

There are 3 (/4) allowable boundary conditions for w (need two on each 
end) which are homogeneous ( ⇒ … = 0) 

w = 0 
•	 Simply-supported (pinned) 

2 

M = E I
d w  

= 0 
dx2 

w = 0 
• Fixed end (clamped) d w  

= 0 
d x  

2 

M = E I
d w  

= 0 
dx2 

• Free end 
2 

S = 
d 
 E I

d w   
2  = 0 

dx  dx  

S = 0 

• Sliding d w  
= 0 

d x  
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There are others of these that are homogeneous and 
inhomogeneous Boundary Conditions 

Examples: 

•	 Free end with an 
axial load 

• Vertical spring 

• Torsional spring 

Solution Procedure for Pcr : 

M = 0 

S = − P 
d w  

0 d x  

M = 0 

S = kf w 

w = 0 
d w

M = − kT d x

•	 Use boundary conditions to get four equations in four unknowns 
(the constants A, B, C, D) 

• Solve this set of equations to find non-trivial value of P 
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 x x x x    A  
   x x x x   B     = 0 homogeneous 

 x x x x    C  equation

   
 x x x x    D 


matrix 

•	 Set determinant of matrix to zero (∆ = 0) and solve resulting 
equation. 

Will find, for example, that for a clamped-clamped column: 
4π 2 EI

Pcr = 
l2 

(need to do solution geometrically) 

with the associated eigenfunction	 1 − cos
2π x  

 l 

Figure 16.9 Representation of clamped-clamped column under end load 
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Figure 16.10 Representation of buckling mode of clamped-clamped 
column 

Note terminology: 

buckling load = eigenvalue 
buckling mode = eigenfunction 

Notice that this critical load has the same form as that found for the 
simply-supported column except it is multiplied by a factor of 4 

Can express the critical buckling load in the generic case as: 

c EIπ 2 

P = cr l2 

where: 

c = coefficient of edge fixity 
Paul A. Lagace © 2001 Unit 16 - 16 



MIT - 16.20 Fall, 2002 

Figure 16.11  Representation of buckling of columns with different end 
conditions 

spring kT 

torsional 

c = 1 c= 4 c = 0.25 c is between 
1 and 4 

Generally use c ≈ 2 for aircraft work with “fixed ends” 

• Cannot truly get perfectly clamped end 
• Simply-supported is too conservative 
• Empirically, c = 2 works well and remains conservative 

Paul A. Lagace © 2001 Unit 16 - 17 



MIT - 16.20 Fall, 2002 

Other important parameters: 

radius of gyration = ρ = ( I A  
1 2) 

slenderness ration = L ρ 
L

effective length = L′ = 
c See Rivello 

Considerations for Orthotropic or Composite Beams 

If maintain geometrical restrictions of a column (l >> in-plane directions), 
only the longitudinal properties, EI, are important. Thus, use techniques 
developed earlier: 

• EL for orthotropic 
• E1I* for composite 

Note: Consider general cross-section 

Buckling could occur in y or z direction (or any direction transverse 
to x, for that matter). 
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--> must evaluate I* for each direction and see which is 
less…buckling occurs for the case where I* is smaller 

--> anywhere in y-z plane 
--> use Mohr’s circle 

Note: May need to be corrected for 
shearing effects 

See Timoshenko and Gere, Theory 
of Elastic Stability, pp. 132-135 

Effects of Initial Imperfections 

Figure 16.12  Representation of column with initial imperfection 

initial deflection (imperfection due to 

OR 
manufacturing, etc.) 
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Figure 16.13  Representation of column loaded eccentrically 

e = “eccentricity” 

load not applied along center line of column 

These two cases are basically handled the same -- a moment is applied 
in each case 

• Case 1 -- due to initial imperfection 
• Case 2 -- since load is not applied along axis of column (beam) 

Look closely at second case: 

Figure 16.14  Representation of full geometry of simply-supported 
column loaded eccentrically 

The governing equation is still the same:
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4 2 

EI
d w  

+ P
d w  

= 0 
dx 4 dx2 

and thus the basic solution is the same: 

w = Asin 
P 

EI  
x + B cos 

P 

EI  
x + C + D x 

What changes are the Boundary Conditions 

For the specific case of Figure 16.14: 

@ x = 0 w = 0 --> B + C = 0 
2 

M = E I
d w  

= − Pe 
⇒ B = e

dx2 

C = -eP 
⇒ −E I  B = − Pe 

E I  

Figure 16.15  Representation of end moment for column loaded 
eccentrically 
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w = 0 ⇒ Asin 
P 

EI  
l + e cos 

P 

EI  
l − e + Dl = 0 

@ x = l 
2 

M = E I
d w  

= − Pe ⇒ 
dx2 

−EI 
P 

Asin 
P 

EI  
l −  EI 

P
e cos 

P 

EI  
l = − Pe 

EI  EI  

Find: D = 0 
 P 

EI  

 
e 1 − cos l
 

A = 
sin 

P 

EI  
l 

Putting this all together, find: 

w 

P 

EI  
l 

P 

EI  
l 

P 

EI  
x 

P 

EI  
x= 

− 
 


 

 


 

+ − 

 

 

 
 

 

 
 

 



 
 

 

 
 

1 

1 

cos 

sin 
sin cos e 
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Deflection is generally finite (this is not an eigenvalue problem). 
π 2 EI

However, as P approaches Pcr = 
l2 

, w again becomes 

unbounded (w --> ∞) 

Figure 16.16  Load-deflection response for various levels of eccentricity 
of end-loaded column 

π 2 EI 
= 

l2Pcr 

increasing eccentricity (e/llll) 

--> Nondimensional problem via e/l 

So, w approaches perfect case as P approaches Pcr. But, 
as e/l increases, behavior is less like perfect case. 
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Bending Moment now: 

  P 

EI  

  
 1 − cos l 

P 

EI  

P 

EI  

2    
M = E I

d w  
= − e P   

P 

EI  

sin x + cos x 
dx2	

 sin l  
   

As P goes to zero, M --> -eP 

This is known as the primary bending moment (i.e., the bending 
moment due to axial loading) 

Also note that as P 

EI  
l --> π (P --> Pcr), M --> ∞ 

(This is due to the fact that there is an instability as w --> ∞. 
This cannot happen in real life) 
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Figure 16.17 Moment-load response for eccentrically loaded column 

eP (primary) 

actual behavior is 
bonded by two 
asymptotes 

Overall: 
Primary 
Bending Moment 

M = -Pe - Pw 

Secondary (due to deflection) 
Bending Moment 
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Figure 16.18  Representation of moments due to eccentricity and 
deflection 

Note: All this is good for small deflections. As deflections 
get large, have post buckling considerations. 
(Will discuss later) 
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