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Earlier looked at Simple Beam Theory in which one considers
a beam in the x-z plane with the beam along the x-direction
and the load in the z-direction:

Figure 14.1    Representation of Simple Beam

•  Loading can be in any direction
•  Can resolve the loading to consider transverse loadings py(x)
       and pz(x);  and axial loading px(x)
•  Include a temperature distribution T(x, y, z)

Now look at a more general case:
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Figure 14.2    Representation of General Beam

Maintain several of the same definitions for a beam and basic
assumptions.

• Geometry:  length of beam (x-dimension) greater than y and z
dimensions

• Stress State: σxx is the only “important” stress;  σxy and σxz found
from equilibrium equations, but are secondary in importance

• Deformation:  plane sections remain plane and perpendicular to
the midplane after deformation (Bernouilli-Euler Hypothesis)
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Definition of stress resultants

Consider a cross-section along x:

Figure 14.3    Representation of cross-section of general beam

Place axis @ center
of gravity of section

where:

These are resultants!S dAz xz= − ∫∫ σ

F dAxx= ∫∫ σ

S dAy xy= − ∫∫ σ
M z dAy xx= − ∫∫ σ

M y dAz xx= − ∫∫ σ
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The values of these resultants are found from statics in terms of the
loading px, py, pz, and applying the boundary conditions of the problem

Deformation

Look at the deformation.  In the case of Simple Beam Theory, had:

u z
d w

d x
= −

where u is the displacement along the x-axis.

Now must add two other contributions…..

Figure 14.4    Representation of deformation in Simple Beam Theory
This comes from the picture:

for small angles
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1. Have the same situation in the x-y plane

Figure 14.5    Representation of bending displacement in x-y plane

where v is the displacement in the y-direction

2. Allow axial loads, so have an elongation in the x-direction due to
this. Call this u0:

By the same geometrical
arguments used previously
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Figure 14.6    Representation of axial elongation in x-z plane

u0, v, w are the deformations of the midplane

Thus:
u x y z u y

d v

d x
z

d w

d x
( , , ) = − −0

bending
about
z-axis

bending
about
y-axis

v x y z v x( , , ) ( )=

w x y z w x( , , ) ( )=

v and w are constant at any cross-section location, x
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Stress and Strain

From the strain-displacement relation, get:

ε
∂
∂xx

u

x

d u

dx
y

d v

dx
z

d w

dx
= = + −







 + −







0

2

2

2

2

(these become total derivatives as there is no
variation of the displacement in y and z)

for functional ease, write:

f
d u

d x1
0=

f
d v

d x2

2

2= −

f
d w

d x3

2

2= −

Caution:  Rivello uses C1, C2, C3. These are not constants,
so use fi ⇒ fi(x)   (functions of x)
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Thus:
ε xx f f y f z= + +1 2 3

Then use this in the stress-strain equation (orthotropic or “lower”):

ε
σ

αxx
xx

E
T= + ∆

(include temperature effects)

Note:  “ignore” thermal strains in y and z. These are of
“secondary” importance.

Thus:

σ ε αxx xxE E T= − ∆

and using the expression for εx:

σ αxx E f f y f z E T= + +( ) −1 2 3 ∆

Can place this expression into the expression for the resultants
(force and moment) to get:
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F dA f E dA f E y dAxx= = +∫∫ ∫∫ ∫∫σ 1 2

+ −∫∫ ∫∫f E z dA E T dA3 α ∆

− = = +∫∫ ∫∫ ∫∫M y dA f E y dA f E y dAz xxσ 1 2
2

+ −∫∫ ∫∫f E yz dA E Ty dA3 α ∆

− = = +∫∫ ∫∫ ∫∫M z dA f E z dA f E y z dAy xxσ 1 2

+ −∫∫ ∫∫f E z dA E T z dA3
2 α ∆

(Note:  f1, f2, f3 are functions of x and integrals are in dy and
dz, so these come outside the integral sign).

Solve these equations to determine f1(x), f2(x), f3(x):

Note:  Have kept the modulus, E, within the
integral since will allow it to vary across
the cross-section
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Orthotropic Beams:  Same comments as applied to Simple Beam
Theory. The main consideration is the longitudinal modulus, so
these equations can be applied.

Using this in the equations for the resultants, we get:

Modulus-Weighted Section Properties/Areas

Introduce “modulus weighted area”:

dA
E

E
dA* =

1

(vary in y and z)

where:

A* = modulus weighted area
E = modulus of that area
E1 = some reference value of modulus
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F E T dA E f dA f y dA f z dA+ = + +











∫∫ ∫∫ ∫∫ ∫∫α ∆ 1 1 2 3

* * *

− + = + +











∫∫ ∫∫ ∫∫ ∫∫M E T y dA E f y dA f y dA f y z dAz α ∆ 1 1 2

2
3

* * *

− + = + +











∫∫ ∫∫ ∫∫ ∫∫M E T z dA E f z dA f y z dA f z dAy α ∆ 1 1 2 3

2* * *

Now define these “modulus-weighted” section properties:

modulus-weighted areadA A* *∫∫ =

y dA y A* * *∫∫ =

z dA z A* * *∫∫ =

y dA Iz
2 *∫∫ = *

z dA Iy
2 *∫∫ = *

y z dA Iyz
*∫∫ = *

modulus-weighted moment of inertia about z-axis

modulus-weighted moment of inertia about y-axis

modulus-weighted product of inertia
(“cross” moment of inertia)
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Also have “Thermal Forces” and “Thermal Moments”. These have the
same “units” as forces and moments but are due to thermal effects and
can then be treated analytically as forces and moments:

F E T dAT = ∫∫ α ∆

M E Tz dAy
T = − ∫∫ α ∆ M E Ty dAz

T = − ∫∫ α ∆

Note: Cannot use the modulus-weighted section properties since α
may also vary in y and z along with E.

Figure 14.7    Representation of general beam cross-section with
                      pieces with different values of modulus

In the definition of the section properties, have used a y* and z*. These
are the location of the “modulus-weighted centroid” referred to some
coordinate system

– –
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1
A

y dA y*
* *∫∫ =

1
A

z dA z*
* *∫∫ =

These become 0 if one uses the modulus-weighted centroid
as the origin

(Note:  like finding center of gravity but
use E rather than ρ)

If one uses the modulus-weighted centroid as the origin, the
equations reduce to:

F F F E f AT TOT+( ) = = 1 1
*

− +( ) = − = +( )M M M E f I f Iz z
T

z
TOT

z yz1 2 3
* *

− +( ) = − = +( )M M M E f I f Iy y
T

y
TOT

yz y1 2 3
* *

(Note:  Rivello uses F*, My
*, Mz

* for FT0T, My
T0T, Mz

T0T)

The modulus-weighted centroid is defined by:
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Recall that:

f
d u

dx1
0=

f
d v

dx2

2

2= −

f
d w

dx3

2

2= −

Motivation for “modulus-weighted’ section properties

A beam may not have constant material properties through the
section. Two possible ways to vary:

1.  Continuous variation

The modulus may be a continuous function of y and z:

E = E(y, z)

Example:  Beam with a large thermal gradient and four
different properties through the cross-section
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A composite beam which, although it’s made of the same
material, has different modulus, Ex, through-the-thickness as
the fiber orientation varies from ply to ply.

Figure 14.8    Representation of cross-section of laminated beam with
                       different modulus values through the thickness

(symmetric)

A method of putting material to its best use is called:

2.  Stepwise variation
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Figure 14.9    Representation of selective reinforcement of an I-beam

Aluminum I-beam (E = 10 Msi)Unidirectional Graphite/Epoxy
cap reinforcements

Furthest from neutral axis ⇒⇒⇒⇒
best resistance to bending

(E = 20 Msi)

Using aluminum as the reference, analyze as follows

Figure 14.10   Representative cross-section with aluminum as base

use E1 to analyze

“Selective Reinforcement”

Representation good only
in direction parallel to axis
about which I is taken.
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E

E
b

msi

msi
b b

1

20
10

2= =

Principal Axes of structural cross-section:

There is a set of y, z axes such that the product of inertia
is zero. These are the principal axes (section has axes of
symmetry)

Ιyz
*( )

Figure 14.11    Representation of principal axes of structural cross-section

modulus-weighted
centroid

Ιyz
*   ≠ 0 Ιyz

*   = 0

(use Mohr’s circle transformation)
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f
F

E A

d u

dx

TOT

1
1

0= =*

f
M

E I

d v

dx
z
TOT

z
2

1

2

2= − = −*

f
M

E I

d w

dx
y
TOT

y
3

1

2

2= − = −*

These equations can be integrated to find the deflections u0, v and w

These expressions for the fi can be placed into the equation for σxx to
obtain:

σ αxx

TOT
z
TOT

z

y
TOT

y

E

E

F

A

M

I
y

M

I
z E T= − − −











1
1* * * ∆

where y,z are principal axes for the section

If analysis is conducted in the principal axes, the equations reduce to:
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(no change)f
F

E A

d u

dx

TOT

1
1

0= =*

f
I M I M

E I I I

d v

dx
y z

TOT
yz y

TOT

y z yz

2

1

2

2

2=
− +

−( )
= −

* *

* * *

f
I M I M

E I I I

d w

dx
z y

TOT
yz z

TOT

y z yz

3

1

2

2

2=
− +

−( )
= −

* *

* * *

Note:  If                then both w and v are present
                                 for My or Mz only

Ιyz
*   ≠ 0

Figure 14.12    Representation of deflection of cross-section not in
                   principal axes

total deflection

If the axes are not principal axes (             ), have:Ιyz
*   ≠ 0
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In this case, the expression for the stress is rather long:

σ xx

TOT
y z

TOT
yz y

TOT

y z yz

E

E

F

A

I M I M y

I I I
= −

−[ ]
−





1
2*

* *

* * *

−
−[ ]
−

−






I M I M z

I I I
E T

z y
TOT

yz z
TOT

y z yz

* *

* * * 2 1α ∆

“Engineering Beam Theory”
(Non-Principal Axes)

Analysis is good for high aspect ratio structure (e.g. a wing)

Figure 14.13    Representation of wing as beam

σxx
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Note:  this analysis neglects the effect of the axial Force F
on the Bending Moment. This became important as the
deflection w (or v) becomes large:

Figure 14.14    Representation of large deflection when axial force and
                         bending deflection couple

F0 = axial force

Primary
Bending
Moment

Secondary
Moment

Secondary moment known as “membrane effect”. Can particularly
become important if Fo is near buckling load (will talk about when talk
about beam-column)

M M w Fdue to pz
= − 0
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Shear Stresses

The shear stresses (σxy and σxz) can be obtained from the equilibrium
equations:

∂σ

∂
∂σ
∂

∂σ
∂

xy xz xx

y z x
+ = −

∂σ

∂
xy

x
= 0

∂σ
∂

xz

x
= 0

Figure 14.15    Representation of cross-section of general beam
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These shear stresses (called “transverse” shear stresses) cause “small”
additional shearing contributions to deflections
Figure 14.16    Representation of pure bending and pure shearing of a
                        beam

Plane sections remain
plane and perpendicular
to midplane

Plane sections remain
plane but not
perpendicular to
midplane

Pure Bending -->

Pure Shearing -->

Consider a beam section under “pure shearing”…

Figure 14.17    Representation of deformation of beam cross-section
                         under pure shearing
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γ
∂
∂

∂
∂

σ
xz

xzw

x

u

z G
= + =

engineering shear strain

Average         over cross-section:
∂
∂
w
x

∂
∂

∂
∂ σw

x

w

x
dA

dA
G

dA

A

S

G A
ave

xz
z







 =











= = −
∫∫

∫∫
∫∫

1

Actually, from energy considerations, one should average:

∂
∂

∂
∂
∂
∂

w

x

w

x
dA

w

x
dA

S

G A
ave

z

e









 =











≈ −
∫∫

∫∫

2

“effective area”

For a Rectangular Cross-Section:  Ae ≈ 0.83 A

Then, “pure shearing” deflections, ws, governed by:

Sz
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w w wT B s= −

d w

d x

S

G A
s

e

= −

evaluated from boundary conditions

w
S

G A
Cs

e

x
= − +∫0 1

The total beam deflection is the sum of the two contributions:

total

bending deflection
from

shearing deflection
from

E I
d w

dx
MB

2

2 =

GA
d w

d x
Se

S = −

Ordinarily, ws is small for ordinary rectangular beams (and can be
ignored). But, for thin-walled sections, w s can become important

(worse for composites since Gxz << Ex)

W W WT B S    = + +
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In addition to “bending” and “shearing”, the section may also twist
through an angle α

Figure 14.18    Representation of twisting of beam cross-section

However, there exists a Shear Center for every section. If the load
is applied at the shear center, the section translates but does not
twist.

(Note:  shear center not necessarily center of gravity or
centroid)
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Figure 14.19   Representation of some beam cross-sections with various
                        locations of center of gravity and shear center

If this condition is not met, then generally bending and twisting will
couple. But there is a class of cross-sections (thin-walled) where
bending and shearing/torsion can be decoupled. Will pursue this
next.

Wrap-up discussion by considering examples of common cross-sections
with principal axes aligned such that Iyz = 0   (see Handout #4a)

These are in contrast to common cross-sections not principal axes (Iyz ≠ 0)

center of gravity
shear center
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Figure 14.19   Some cross-sections generally not in principal axes

Triangle

Angle

Wing
Section
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--> Finally

What are the limitations to the Engineering Beam Theory as developed?

• Shear deflections small (can get first order cut at this)
• No twisting (load along shear center) -- otherwise torsion and

bending couple
• Deflections small

o –  No moment due to axial load (Pw)
o –  Angles small such that sinφ ≈ φ
•   --> will consider next order effect when discuss buckling and

postbuckling
•   --> consideration will stiffen (membrane effect) structure

• Did not consider εzz (Poisson’s effect)


