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We have thus far looked at:
 in-plane loads

e torsional loads

In addition, structures can carry loads by bending. The 2-D
case is a plate, the simple 1-D case is a beam. Let’s first
review what you learned in Unified as Simple Beam Theory

(review of) Simple Beam Theory

A beam is a bar capable of carrying loads in bending. The loads
are applied transverse to its longest dimension.

Assumptions:

1. Geometry
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Figure13.1  General Geometry of a Beam
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a) long & thin = /¢ >>Db, h

b) loading is in z-direction
c) loading passes through “shear center” = no torsion/twist
(we’ll define this term later and relax this constraint.)

d) cross-section can vary along x

2. Stress state

a) o, 0,, 0, =0 = no stress in y-direction
b) Oxx >> Oy, ) -
. o, >> 6, only significant stresses are o,, and o,,
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Note: there is a load in the z-direction to cause
these stresses, but generated o,, IS much

larger (similar to pressurized cylinder example)

Why is this valid?
Look at moment arms:
Representation of force applied in beam

..

Figure 13.2
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o,, moment arm is order of (h)
0,, moment arm is order of (/)

and / >>h
= 0,, >> 0,, for equilibrium
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3. Deformation
Figure 13.3 Representation of deformation of cross-section of a beam

deformed state (capital letters)

0 is at midplane i

undeformed state (small letters)

define: w = deflection of midplane (function of x only)
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a) Assume plane sections remain plane and perpendicular to
the midplane after deformation

“Bernouilli - Euler Hypothesis” ~ 1750
b) For small angles, this implies the following for deflections:

U(X,y,z) = _Z¢ =~ —Zd—W (13 - 1)
dx
( dw\ total derivative
\¢ = &} since it does not

vary with y or z

Figure 13.4 Representation of movement in x-direction of two points
on same plane in beam

= U =-zZsin ¢ Note direction of u
relative to +x direction
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and for ¢ small:

=U=-Z¢
v(x,y,2) = 0
W(x,y,2) ~ W(x) (13-2)
Now look at the strain-displacement equations:
Ju d’w
£ = — = —7—— 13-3
X J X dx? ( )
oV
ey = — =0
Jy
JdW . .
£, = Fri 0 (no deformation through thickness)
Z
Ju A/
Ey = — + — = 0
ay  IX
oV A
€, = — + — = 0
iz  dy
Ju A A A
&, = — + — =-——+ — =0
0z Jd X Jd X Jd X
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Now consider the stress-strain equations (for the time being consider
isotropic...extend this to orthotropic later)

0

€y = — 13-4

«= 2 (13- 4)
VO, . : : :

Ey = = = <-- small inconsistency with previous
VO . : : :

£, = — EXX <-- small inconsistency with previous
2(1

Ey = %GW =0
2(1+v)

gyz = ?O’yz =0

£, = z(l—gv)azx <-- Inconsistency again!

We get around these inconsistencies by saying that ¢,,, ¢,,, ¢,, are
very small but not quite zero. This is an approximation. We will
evaluate these later on.
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4. Equilibrium Equations
Assumptions:

a) no body forces
b) equilibrium in y-direction is “ignored”

Fall, 2002

C) X, z equilibrium are satisfied in an average sense

So:

9% , 9% _ o (13-5)
Iix | 9z

0=20 (y -equilibrium)

Jdo,, . Jd0,, _ 0 (13 - 6)
d X Jdz

Note, average equilibrium equations:
ﬂ'[ Eq.(13-6) |dydz = as _ 0

face dx
ﬂ'z[ Eq. (13-5) ]dydz= dM _ o
face dx
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These are the Moment, Shear, Loading relations where the stress

resultants are: .

Axial Force F = (2%0,.bdz (13-7)
2

h
Shear Force S=-(%0,bdz (13 - 8)

2

h
Bending Moment M = -(4%zo,bdz (13-9)

2

Figure 13.8  Representation of Moment, Shear and Loading on a beam
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So the final important equations of Simple Beam Theory are:

d’w  Ju
Ex dx? J X ( )
OXX

Exx = E (13 - 4)
ds
— =P (13 - 6a)
dx
d—M = S (13 - 5a)

dx

--> How do these change if the material is orthotropic?

We have assumed that the properties along x dominate and have

ignored ¢,,, etc.
Thus, use E in the above equations.

But, approximation may not be as good since
gyyr €521 €, MAy be large and really not close enough to zero to be

assumed approximately equal to zero
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Solution of Equations
using (13 - 3) and (13 - 4) we get:

Fall, 2002

2
o, = Eeg, = —Ezdvzv (13 - 10)
dx
Now use this in the expression for the axial force of equation (13 - 7):
2 D
Fo-e9We by
0% 5
2 2 13
__gdW Z
dx“ 2 |n

No axial force in beam theory

(Note: something that carries axial and bending
forces is known as a beam-column)

Now place the stress expression (13 - 10) into the moment equation
(13 -9):

2y, N
M=EdW

2 2
—— (% z°bdz
dX2 >

Paul A. Lagace © 2001

Unit 13 - 13



MIT - 16.20 Fall, 2002
h

definition: | = fzh Z’bdz moment of inertia of
2 Cross-section

for rectangular cross-section:

O pengn) 70

b

Thus:

d*w
M= El — (13 - 11)
dx?

“Moment - Curvature Relation”

--> Now place equation (13 - 11) into equation (13 - 10) to arrive at:

Oy = —EzM
El

Mz
= |0, = ——— (13 - 12)

XX
I
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Finally, we can get an expression for the shear stress by using
equation (13 - 5):
Jdo 0o

% _ % 13-5
¥, JX (13-9)

Multiply this by b and integrate from z to h/2 to get:

h h
f2 bﬂdz _ Z%bdz
z 0Z z JdX

0 M Z\
= blo,,(h/2)-0,(z bdz
[‘ESIJ) 3] - f ax\ |
=0 J
/ Z dM
(from boundary condition = - ———
| dx
of no stress on top surface) s
(13 - 13)
This all gives:
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where:

h
Q = f2 zb dz = Moment of the area above the center
‘\ z
function of z -- maximum occurs atz =0

Summarizing;:

d—S—p
dx
aM _ <
dx
Mz
o, = ———
I
o - S0
| b
2
M- g1 4
dx
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Notes:

* 0o, Is linear through thickness and zero at midpoint

e 0O,, has parabolic distribution through thickness with
maximum at midpoint

e Usually o, >> o0,

Solution Procedure

1. Draw free body diagram

2. Calculate reactions
3. Obtain shear via (13 - 6a) and then o, via (13 - 13)
4. Obtain moment via (13 - 5a) and then o, via (13 - 12) and
deflection via (13 - 11)
NOTE: steps 2 through 4 must be solved
simultaneously if loading is indeterminate
Notes:
« Same formulation for orthotropic material except
» Use E,
» Assumptions on ¢,; may get worse
 Can also be solved via stress function approach
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 For beams with discontinuities, can solve in each section
separately and join (match boundary conditions)

Figure 136 Example of solution approach for beam with discontinuity

)
i s -+
(B ~ l ® X,
_
'! Fa
d2 *'__'xr_ii' d2
Wa | Wg

--> Subject to Boundary Conditions:
@x=0,w=w,=0

@ X = Xq,

’

\

WA=

dw »
dx

@x=0,w=wg=0
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dwpg

, displacements and
slopes match

dx
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