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We have thus far looked at: 
• in-plane loads 
• torsional loads 

In addition, structures can carry loads by bending. The 2-D 
case is a plate, the simple 1-D case is a beam. Let’s first 
review what you learned in Unified as Simple Beam Theory 

(review of) Simple Beam Theory 

A beam is a bar capable of carrying loads in bending. The loads 
are applied transverse to its longest dimension. 

Assumptions: 

1. Geometry 
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Figure 13.1  General Geometry of a Beam 

a) long & thin ⇒ l >> b, h 

b) loading is in z-direction 
c)	 loading passes through “shear center” ⇒ no torsion/twist 

(we’ll define this term later and relax this constraint.) 

d) cross-section can vary along x 

2. Stress state 

a) σyy, σyz, σxy = 0 ⇒ no stress in y-direction 
b) σxx >> σzz 

σxz >> σzz 
⇒ only significant stresses are σxx and σxz• 
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Note: there is a load in the z-direction to cause 
these stresses, but generated σxx is much 
larger (similar to pressurized cylinder example) 

Why is this valid? 
Look at moment arms: 

Figure 13.2  Representation of force applied in beam 

σxx moment arm is order of (h) 
σzz moment arm is order of (l) 

and l >> h 

⇒ σxx >> σzz for equilibrium 
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3. Deformation 

Figure 13.3  Representation of deformation of cross-section of a beam 

deformed state (capital letters) 

undeformed state (small letters) 

o is at midplane 

define: w = deflection of midplane (function of x only) 
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a)	 Assume plane sections remain plane and perpendicular to 
the midplane after deformation 

“Bernouilli - Euler Hypothesis” ~ 1750 

b) For small angles, this implies the following for deflections: 
dw 

u x y z( , , )  ≈ −  zφ ≈ −  z (13 - 1)
dx 

total derivative φ = 
dw  

since it does not dx  vary with y or z 
Figure 13.4 

on same plane in beam 

Note direction of u 
relative to +x direction 

Representation of movement in x-direction of two points 

⇒ u = -z sin φ 
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and for φ small: 
⇒ u = -z φ 

v x y z( , , )  = 0 

( , , )  ≈ w xw x y z ( )  (13 - 2) 

Now look at the strain-displacement equations: 
2∂ u d w

ε xx = 
∂ x 

= − z 
dx2 (13 - 3) 

∂ v
ε = = 0 yy ∂ y 

∂ w
ε = = 0 (no deformation through thickness)zz ∂ z 

∂ u ∂ v
ε = + = 0 xy ∂ y ∂ x 

∂ v ∂ w
ε = + = 0 yz ∂ z ∂ y 

∂ u ∂ w ∂ w ∂ w
ε = + = − + = 0 xz ∂ z ∂ x ∂ x ∂ x 
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Now consider the stress-strain equations (for the time being consider 
isotropic…extend this to orthotropic later) 

σ xxε = (13 - 4)xx E 

νσ  xxε = − <-- small inconsistency with previousyy E 

νσ  xxε = − <-- small inconsistency with previouszz E 

ε = 
2 1  + ν)

σ xy = 0
( 

xy E 

(
ε yz = 

2 1  + ν)
σ yz = 0

E 

(
ε zx = 

2 1  + ν)
σ zx  <-- inconsistency again! 

E 

We get around these inconsistencies by saying that εyy, εzz, εxz are 
very small but not quite zero. This is an approximation. We will 
evaluate these later on. 
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4. 	Equilibrium Equations 

Assumptions: 

a) no body forces 
b) equilibrium in y-direction is “ignored” 
c) x, z equilibrium are satisfied in an average sense 

So: 
∂σ  ∂σ  xx xz+ = 0 (13 - 5)
∂ x ∂ z 

0 = 0 (y -equilibrium) 

∂σ  ∂σ  xz zz+ = 0 (13 - 6)
∂ x ∂ z 

Note, average equilibrium equations: 

∫∫ [ Eq. (13 − 6) ] dy dz ⇒ dS 
= p (13 - 6a) 

face dx 

∫∫ z[ Eq. (13 − 5) ] dy dz ⇒ d M  
= S (13 - 5a) 

face dx 
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These are the Moment, Shear, Loading relations where the stress 
resultants are: 

Axial Force 

Shear Force 

Bending Moment 

h 

F = ∫− 

2 
h σ xxb dz 
2 

h 

S = − ∫− 

2 
h σ xzb dz 
2 

h 

M = − ∫− 

2 
h zσ xxb dz 
2 

(13 - 7)


(13 - 8)


(13 - 9)


Figure 13.8  Representation of Moment, Shear and Loading on a beam 

[Force/Area] 

cut beam 
(F, S, M found from statics) 

and 
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So the final important equations of Simple Beam Theory are: 

(13 - 3) 

(13 - 4) 

(13 - 6a) 

(13 - 5a) 

ε 
∂ 
∂xx z 

d w  
dx 

u 
x 

= − = 
2 

2 

ε 
σ 

xx 
xx 

E 
= 

dS 
dx 

p= 

d M  
dx 

S= 

--> How do these change if the material is orthotropic? 

We have assumed that the properties along x dominate and have 
ignored εyy, etc. 

Thus, use EL in the above equations. 

But, approximation may not be as good since 
εyy, εzz, εxz may be large and really not close enough to zero to be 
assumed approximately equal to zero 
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Solution of Equations 

using (13 - 3) and (13 - 4) we get: 
2
d w

σ xx = Eε xx = − Ez 
dx2 

(13 - 10) 

Now use this in the expression for the axial force of equation (13 - 7): 
2 hd w  

F = − E 
dx2 ∫− 

2 
h z b  dz 
2


h 
2
d w  z 2  2


= − E 
dx2 2 

b 


− 

h 
= 0


2


No axial force in beam theory 

(Note: something that carries axial and bending 
forces is known as a beam-column) 

Now place the stress expression (13 - 10) into the moment equation 
(13 - 9):


2 h
d w  2
M = E 
dx2 ∫− 

2 
h z b dz

2
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h 
2definition: I = ∫− 

2 
h z b dz moment of inertia of 
2 cross-section 

for rectangular cross-section: 

I =	
bh3 

[length4] h
12 

b 

Thus: 
2d w  

M = E I (13 - 11) 
dx2 

“Moment - Curvature Relation” 

--> Now place equation (13 - 11) into equation (13 - 10) to arrive at: 
M

σ = − Ez  xx E I  
M z  

⇒	 σ xx = − (13 - 12)
I 
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Finally, we can get an expression for the shear stress by using 
equation (13 - 5): 

∂σ  ∂σ  xz xx= − (13 - 5)
∂ z ∂ x 

Multiply this by b and integrate from z to h/2 to get: 
h h∂σ  ∂σ  
∫ xz xx 

z 

2 b 
∂ z 

dz = − ∫z 

2 

∂ x 
b dz

h ∂  M z  ⇒	 b[σ xz (h 2) −σ xz (z)] = − ∫z 

2 

∂ x 
− 

 
b dz 

I 
= 0 

z d M  
(from boundary condition = − 

I d x
of no stress on top surface) 

= S 

(13 - 13) 

This all gives: 

⇒ σ = − 
SQ  

xz I b  
Paul A. Lagace © 2001 Unit 13 - 15 



MIT - 16.20 Fall, 2002 

where: 
h 

Q = ∫z 

2 z b dz = Moment of the area above the center 

function of z - - maximum occurs at z = 0 

Summarizing: 

dS 
= p

dx 

d M  
= S 

dx 

M z
σ xx = − 

I 

σ = − 
SQ  

xz I b  
2d w  

M = E I 
dx2 
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Notes: 

• σxx is linear through thickness and zero at midpoint 
•	 σxz has parabolic distribution through thickness with 

maximum at midpoint 
• Usually σxx >> σzz 

Solution Procedure 

1. Draw free body diagram 
2. Calculate reactions 
3. Obtain shear via (13 - 6a) and then σxz via (13 - 13) 
4.	 Obtain moment via (13 - 5a) and then σxx via (13 - 12) and 

deflection via (13 - 11) 

NOTE:  steps 2 through 4 must be solved 
simultaneously if loading is indeterminate 

Notes: 
•	 Same formulation for orthotropic material except 

Use EL 

Assumptions on εαβ may get worse 
• Can also be solved via stress function approach 
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•	 For beams with discontinuities, can solve in each section 
separately and join (match boundary conditions) 

Figure 13.6 Example of solution approach for beam with discontinuity 

d w22 

Ε Ι  
d wA = MA Ε Ι  2

B = MB
dx2 dx 

Ε Ι  wA = ... + C1x + C2 Ε Ι  wB = ... + C3x + C4 

--> Subject to Boundary Conditions: 

@ x = 0, w = wA = 0 

@ x = x1, wA = wB 
displacements and

dwA dwB slopes match= 
dx dx 

@ x = l, w = wB = 0 
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