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Before we look specifically at thin-walled sections, let us 
consider the general case (i.e., thick-walled). 

Hollow, thick-walled sections: 
Figure 12.1  Representation of a general thick-walled cross-section 

φφφφ = C2 on one boundary 

φφφφ= C1 on one boundary 

This has more than one boundary (multiply-connected) 
• dφ = 0 on each boundary 
•	 However, φ = C1 on one boundary and C2 on the other (they 

cannot be the same constants for a general solution [there’s 
no reason they should be]) 

=> Must somehow be able to relate C1 to C2 
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It can be shown that around any closed boundary: 

∫ = τds AGk 2 (12-1) 

Figure 12.2  Representation of general closed area 

ττττ 

where: 
τ = resultant shear stress at boundary 
A = Area inside boundary 
k = twist rate = dα 

dz 
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Notes: 
1.	 The resultant shear stresses at the boundary must be in the 

direction of the tangents to the boundary 
2.	 The surface traction at the boundary is zero (stress free), but the 

resultant shear stress is not 

Figure 12.3  Representation of a 3-D element cut with one face at the 
surface of the body 

To prove Equation (12 - 1), begin by considering a small 3-D element from 
the previous figure 
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Figure 12.4  Exploded view of cut-out 3-D elements 

this face is stress free, thus 
σnormal = 0 

Look at a 2-D cross-section in the x-y plane: 
Figure 12.5  Stress field at boundary of cross-section 
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τ resul tant = σzy cos γ + σzx sin γ 

geometrically: cos γ =	
dy 
ds 

dx
sin γ = 

ds 

Thus: 
dx τ ds = ∫  


dy
ds zy σ ds + σzx ds∫  ds  

= ∫ σzy dy + σzx dx 

We know that: 

 ∂w
σzy = G 

 
kx + 

∂y 
 

σzx = G −ky + 
∂w 

 ∂x  
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⇒	 = ∫ τ ds ∫ G 

kx +  + ∫dy 

∂w 
G −ky + 

∂w dx 
 ∂y   ∂x  

+   + ∫ dx Gdy k ∫∂w ∂w  
= G {xdy − ydx}

 ∂x ∂y  

= dw 

We further know that: 

∫ dw = w = 0 around closed contour 

So we’re left with: 

∫ τds = Gk ∫ {xdy − ydx} 
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Use Stoke’s Theorem for the right-hand side integral: 

∫ 
∂N ∂M{Mdx + Ndy} = ∫∫  ∂x 

−
∂y 

 dxdy 

In this case we have 

∂M
M = − y ⇒ = − 1 

∂y 

∂N
N = x ⇒ = 1 

∂x 

We thus get: 

Gk ∫ {xdy − ydx} = Gk ∫∫ [1 − −  1)] dxdy( 

= Gk ∫∫ 2dxdy 
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We furthermore know that the double integral of dxdy is the planar area: 

∫∫ ddxdy = Area = A 

Putting all this together brings us back to Equation (12 - 1): 

∫ = τds AGk 2
Q.E.D. 

Hence, in the general case we use equation (12 - 1) to relate C1 and C2. 
This is rather complicated and we will not do the general case here. For 
further information 

(See Timoshenko, Sec. 115) 

We can however consider and do the… 
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Special Case of a Circular Tube 

Consider the case of a circular tube with inner diameter Ri and outer 
diameter Ro 

Figure 12.6  Representation of cross-section of circular tube 

For a solid section, the stress distribution is thus:


Figure 12.7  Representation of stress “flow” in circular tube


τres is directed along circles 
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The resultant shear stress, τres, is always tangent to the boundaries of the 
cross-section 

So, we can “cut out” a circular piece (around same origin) without violating 
the boundary conditions (of τres acting tangent to the boundaries) 

Using the solution for a solid section, we subtract the torsional stiffness of 
the “removed piece” (radius of Ri) from that for the solid section (radius of 
Ro) 

π R4 π R4 

J = o − i 

2 2 

Exact solution for thick-
walled circular tube 

let us now consider: 
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Thin-Walled Closed Sections 

Figure 12.7 Representation of cross-section of thin-walled closed section 

outer inner 

Here, the inner and outer boundaries are nearly parallel ⇒ resultant 
shear stresses throughout wall are tangent to the median line. 

Basic assumption for thin, closed section: 

τresultant is approximately constant through the thickness t. 
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For such cases: Aouter ≈ Ainner ≈ A 

Hence: ∫ τ ds ≈ ∫ τ ds ≈ 2GkA 
outer inner 

Note: 	basic difference from singly-connected 
boundaries (open sections). 

Figure 12.9 Representation of stress distribution through thickness in 
open cross-section under torsion 

very important difference 

ττττres varies linearly 
through- the-thickness 

Now, we need to find the boundary conditions: 
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Figure 12.10 Representation of forces on thin closed cross-section 
under torsion 

Force: dF = ττττ t ds 

contribution to torque: 

d T  = hτ t ds 

(h = moment arm) 

Note: h, τ, t vary with s (around section) 

Total torque = ∫ d T  = ∫ τ t hds 

Paul A. Lagace © 2001 Unit 12 - 14 



MIT - 16.20 Fall, 2002 

But τ t is constant around the section. This can be seen by cutting out a 
piece of the wall AB. 

Figure 12.11  Representation of infinitesimal piece of wall of thin 
closed section under torsion 

z 

x-y plane 

Use ∑ Fz = 0 to give: 

−τ t dz + τ B tB dz = 0A A  

⇒ τ tA A  = τ B tB 

in general: τ t = constant 
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Define: 

“shear flow” = q = τ t = constant 

(we will use the concept of “shear flow” 

Analogy: single 1-D pipe flow 

when we deal with shell beams) 

uh = constant 

velocity 
Returning to 

∫ d T  = ∫ τ t hds 

since τ t = constant gives: 

∫ d T  = τ t ∫ h ds 

But, hds = 2dA via geometric argument: 

Paul A. Lagace © 2001 Unit 12 - 16 



MIT - 16.20 Fall, 2002 

hds
dA = 

2 

 height
2
x base 


 = Area TofTriangle

 

Finally: 

⇒ d T  t ∫ = τ ∫ 2 dA 

⇒ T = 2τ t A 
T 

⇒ τ resultant = 
2At Bredt’s 

(12 - 2) 

formula 
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Now to find the angle of twist, place (12 - 2) into (12 - 1): 
T 

ds = G k 2A 
2At∫ 

T ds 
⇒	 k = ∫2 4A G  t 

This can be rewritten in the standard form: 

dα T
k = = 

dz GJ 

4A2 

⇒ J = 

t 

ds 
∫ 

(Note: use midline for calculation) 

valid for any shape….. 
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Figure 12.12 Representation of general thin closed cross-section 

How good is this approximation? 

It will depend on the ratio of the thickness to the overall dimensions 
of the cross-section (a radius to the center of torsion) 

Can explore this by considering the case of a circular case since we 
have an exact solution: 

π R4 − π R4 

J = o i

2 

versus approximation: 
4A2 

J ≈ 
(will explore in home assignment)

t 

ds 
∫ 
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Final note on St. Venant Torsion: 

When we look at the end constraint (e.g., rod attached at boundary): 

Figure 12.13  Overall view of rod under torsion 

Here, St. Venant theory 
is good 

in this local region, 
violation of assumption 
of St. Venant theory 

Built-in end 

At the base, w = 0. This is a violation of the “free to warp” 
assumption. Thus, σzz will be present. 

⇒ resort to complex variables 
(See Timoshenko & Rivello) 
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