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For a number of cross-sections, we cannot find stress 
functions. However, we can resort to an analogy introduced

by Prandtl (1903). 

Consider a membrane under pressure pi 

“Membrane”: structure whose thickness is small compared to surface 
dimensions and it (thus) has negligible bending rigidity (e.g. soap bubble) 

⇒ membrane carries load via a constant tensile force along itself. 

N.B. 	Membrane is 2-D analogy of a string 
(plate is 2-D analogy of a beam) 

Stretch the membrane over a cutout of the cross-sectional shape in the

x-y plane:


Figure 11.1  Top view of membrane under pressure over cutout


membrane 
covering a cutout 
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N = constant tension force per unit length [lbs/in] [N/M] 

Look at this from the side: 

Figure 11.2  Side view of membrane under pressure over cutout 

Assume: lateral displacements (w) are small such that no 
appreciable changes in N occur. 

We want to take equilibrium of a small element: 

∂w ∂w 
(assume small angles ∂x

, 
∂y ) 
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Figure 11.3  Representation of deformation of infinitesimal element of 
membrane 

y 

x 

z 

Look at side view (one side): 

Figure 11.4 

z 

y 

Side view of deformation of membrane under pressure 

Note: we have similar picture in the x-z plane 
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We look at equilibrium in the z direction. 

Take the z-components of N: 

e. g. 

w 
z-component = − N sin 

∂ 
∂y 

note +z direction 

for small angle: 

sin 
∂w 

≈
∂w 

∂y ∂y 
∂w 

⇒ z-component = − N 
∂y (acts over dx face) 
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With this established, we get: 
∂w ∂w ∂ 2 w  

+	 ∑ Fz = 0 ⇒ pi dxdy − N dx + N  + 2 dydx 
∂y  ∂y ∂y  

∂w ∂w ∂ 2 w 
− N dy + N  + 2 dxdy = 0 

∂x  ∂x ∂x  

Eliminating like terms and canceling out dxdy gives: 
∂ 2 w ∂ 2 w 

pi + N 
∂y2 + N 

∂x2 = 0 

Governing Partial 
⇒	

∂
∂

∂
∂

2 

2 

2 

2 

w 

x

w 

y

p

N 
i + − = Differential 

Equation for 
deflection, w, of a 
membrane 

Boundary Condition: membrane is attached at boundary, so 
w = 0 along contour 

⇒ Exactly the same as torsion problem: 
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Torsion Membrane


Partial 
Differential ∇2 φ = 2Gk ∇2 w = – pi / N 
Equation 

Boundary φ = 0 on contour w = 0 on contour
Condition 

Analogy: 
TorsionMembrane 

φ→w 

- k→pi 

→N 1 
2G 

→ ∂ 

∂ 

w 
x 

∂ 

∂ 
= 

φ 
σ 

x zy 

→ 
∂ 

∂ 
= −

φ 
σ 

y zx 
∂ 

∂ 

w 
y 

→Volume wdxdy= ∫∫ − 
Τ 

2 
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Note: for orthotropic, would need a membrane to give 
different N’s in different directions in proportion to 
Gxz and Gyz 

⇒ Membrane analogy only applies to isotropic 
materials 

• This analogy gives a good “physical” picture for φ 

• Easy to visualize deflections of membrane for odd shapes 

Figure 11.5  Representation of φ and thus deformations for various 
closed cross-sections under torsion 

etc. 

Can use (and people have used) elaborate soap film equipment and 
measuring devices (See Timoshenko, Ch. 11) 
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From this, can see a number of things: 

•	 Location of maximum shear stresses (at the maximum slopes of 
the membrane) 

• Torque applied (volume of membrane) 

•	 “External” corners do not add appreciability to the bending rigidity 
(J) 

⇒ eliminate these: 

Figure 11.6�  Representation of effect of external corners 

external corner 

⇒ about the same 

• Fillets (i.e. @ internal corners) eliminate stress concentrations 
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Figure 11.7  Representation of effect of internal corners 

relieved stresshigh stress

concentration concentration


To illustrate some of these points let’s consider specifically…
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Torsion of a Narrow Rectangular 
Cross-Section 

Figure 11.8  Representation of torsion of structure with narrow 
rectangular cross-section 

Cross-Section 

b >> h 
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Use the Membrane Analogy for easy visualization:


Figure 11.9 Representation of cross-section for membrane analogy


Consider a cross-section in the middle (away from edges): 

Figure 11.10  Side view of membrane under pressure 
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The governing Partial Differential Equation. is: 

∂ 2 w 
+ 

∂ 2 w 
= − 

pi 

∂x2 ∂y2 N 

Near the middle of the long strip (away from y = ± b/2), we would 
∂2w 

expect 2 to be small. Hence approximate via:
∂y 

∂ 2 w 
≈ −  

pi 

∂x2 N 

To get w, let’s integrate: 

∂w 
≈ −  

pi x + C1∂x N 

w ≈ −  
pi x2 + C1x + C22 N 

Now apply the boundary conditions to find the constants: 
h


@ x = +  , w = 0

2
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⇒	 0 = − 
pi h2 

+ C1 

h 
+ C22 N 4 2 

h

@ x = − , w = 0


2


⇒	 0 = − 
pi h2 

− C1 

h 
+ C22N 4 2 

This gives: 

C1 = 0 
2 

iC = 
p h  

2 8 N 

Thus: 
w ≈ 

pi  
h2 

− x2 

 

2 N  4  

Check the volume: 

Volume = ∫∫ w dxdy 
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integrating over dy: 
h


2 
= b ∫− 

2 
h 

pi  
h2 

− x dx


2 2 N  4 


h 

p b   h2 x3  2


= 
2 

i

N 
 4 

x − 
3 

− 

h


2


p b   h2 2h 
− 

2 h3 
i
=

2 N 

 4 2 3 8  



3

i
⇒ Volume = 

p b h


N 12


Using the Membrane Analogy: 

pi = − k 
1


N =

2G


3


Volume = − 
T 

= 
pi b h


2 N 12
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−k bh32 G T 
= −

12 2 
3T 

⇒ k = − 
Gbh3 (k - T relation) 

dα 
where: k = 

dz 
So: 

dα T 
= 

dz GJ 
bh3 

where: J = 
3 

To get the stress: 

σ = 
∂w 

= − 
pi x = 2kGxyz ∂x N 

σ yz = 
2T

x (maximum stress is twice 

J that in a circular rod) 
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∂w
σ xz = = 0 (away from edges)

∂y 

Near the edges, σxz ≠ 0 and σyz changes: 

Figure 11.11  Representation of shear stress “flow” in narrow 
rectangular cross-sections 

2Τ at theseσyz = 
J

x 
points 

different 
here 

(generally, these are 
the maximum 
stresses) 

Need formulae to correct for “finite” size dependent on ratio b/h. 
This is the key in b >> h. 
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Other Shapes 

Through the Membrane Analogy, it can be seen that the previous theory 
for long, narrow rectangular sections applies also to other shapes. 

Figure 11.12 Representation of different thin open cross-sectional 
shapes for which membrane analogy applies 

Slit tube Channel I-beam 

Consider the above (as well as other similar shapes) as a long, narrow 
membrane 

→ consider the thin channel that then results…. 
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Figure 11.13  Representation of generic thin channel cross-section 

Volume = − 
T 

2 

pi  b h3 b h3 b h3  T1 1  + 2 2  + 3 3  = − 
N 

 12 12 12 
 2 (from solution for 

narrow rectangle) 

This gives: 
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 b h3 b h3 b h3  T
−k G   

1 1  + 2 2  + 3 3  = −2 
 12 12 12 

 2 
T 

⇒	 k = ⇒  k - T relation 
GJ 

where: 

J = 
1 

b h3 + 
1 

b h3 + 
1 

b h3 = ∑ 
1 

b h3 

3 1 1  3 2 2  3 3 3  
i 3 i i  

For the stresses: 

σ = 
∂w 

= − 
pi x = k2Gx = 

2T
xyz ∂x N J 

⇒ maximum 
(“local” x) 

2T h1σ yz = 
J 2 

in section 1 

2T h2σ yz = 
J 2 

in section 2 

2T h3σ yz = 
J 2 in section 3 
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Figure 11.14 Representation of shear stress “flow” in thin channel 
under torsion 

2Τ h2σxz = 
J 2 

Actually have shear 
concentrations at corners 

(large slopes ∂w ∂w ), 
∂y ∂x 

⇒ make “fillets” there 

Figure 11.15  Channel cross-section with “fillets” at inner corners 

decrease slope 
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Use the Membrane Analogy for other cross-sections 

for example: variable thickness (thin) cross-section 

Figure 11.15 Representation of wing cross-section (variable thickness 
thin cross-section) 

Using the Membrane Analogy: 

1 yT 3 2T h
J ≈ 

3 ∫yL

h dy σ zy ≈ 
J 2 etc. 

Now that we’ve looked at open, walled sections; let’s 
consider closed (hollow) sections. (thick, then thin) 
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