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We have looked at basic in-plane loading. Let’s now consider 
a second “building block” of types of loading: basic torsion. 

There are 3 basic types of behavior depending on the type of 
cross-section: 

1. Solid cross-sections 

“classical” solution technique 
via stress functions 

2. Open, thin-walled sections 

Membrane Analogy 
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3. Closed, thin-walled sections 

Bredt’s Formula 

In Unified you developed the basic equations based on some broad 
assumptions. Let’s… 

• Be a bit more rigorous 
• Explore the limitations for the various approaches 

•	 Better understand how a structure “resists” torsion and 
the resulting deformation 

•	 Learn how to model general structures by these three 
basic approaches 

Look first at 
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Classical (St. Venant’s) Torsion Theory 

Consider a long prismatic rod twisted by end torques: 
T [in - lbs] [m - n] 

Figure 10.1  Representation of general long prismatic rod 

Length (l) >> dimensions 

in x and y directions 

Do not consider how end torque is applied (St. Venant’s principle) 
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Assume the following geometrical behavior: 

a)	 Each cross-section (@ each z) rotates as a rigid body (No 
“distortion” of cross-section shape in x, y) 

b) Rate of twist, k = constant 

c) Cross-sections are free to warp in the z-direction but the 

This is the “St. Venant Hypothesis” 

warping is the same for all cross-sections 

“warping” = extensional deformation in the direction of the axis 
about which the torque is applied 

Given these assumptions, we see if we can satisfy the equations of 
elasticity and B.C.’s. 

⇒  SEMI-INVERSE METHOD 
Consider the deflections: 

Assumptions imply that at any cross-section location z: 
 dαα =  dz  

z = k z 

(careful! a constant 
Rivello uses φ!) rate of twist 

(define as 0 @ z = 0) 
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Figure 10.2  Representation of deformation of cross-section due to 
torsion 

(for small α) 

undeformed position 

This results in: 
consider direction of + u 

u (x, y, z) = rα (-sin β) 

v (x, y, z) = rα (cos β) 

w (x, y, z) = w (x, y) 

⇒  independent of z! 
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We can see that: 

r = y2 x + 2 

sinβ =	
y 
r 

x 
cosβ = 

r 

This gives: 

u (x, y, z) = -y k z (10 - 1) 

v (x, y, z) = x k z (10 - 2) 

w (x, y, z) = w (x, y) (10 - 3) 
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Next look at the Strain-Displacement equations: 

∂uε = = 0xx ∂x 
∂vε = = 0yy ∂y 

∂wε = = 0zz ∂z 
∂u 

(consider: u exists, but ∂x 
= 0 

v exists, but	
∂v = 0)
∂y 

⇒  No extensional strains in torsion if cross-sections are free 
to warp 
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∂u ∂vε = + = − z k  + z k  = 0xy ∂y ∂x 

⇒ cross - section does not change shape (as assumed!) 

∂v ∂w ∂wεyz =
∂z 

+
∂y 

= k x  +
∂y 

(10 - 4) 

∂w ∂u ∂wεzx =
∂x 

+
∂z 

= − k y  +
∂x 

(10 - 5) 

Now the Stress-Strain equations: 

let’s first do isotropic 
1εxx = 
E [σxx − ν(σyy + σzz )] = 0 

εyy =	
1 [σyy − ν(σxx + σzz )] = 0 
E 
1εzz = 
E [σzz − ν(σxx + σyy )] = 0 

⇒ σxx, σyy, σzz = 0 
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(ε = 
2 1  + ν) σ = 0 ⇒ σ = 0xy E xy xy 

ε = 
2 1  + ν) σyz 

( 
E yz (10 - 6) 

1/ G 

(εxz = 
2 1  + ν) σxz (10 - 7)

E 

⇒ only σxz and σyz stresses exist 

Look at orthotropic case: 

1εxx = 
E11 

[σxx − ν12 σyy − ν13 σzz ] = 0 

1εyy = 
E22 

[σyy − ν21 σxx − ν23 σzz ] = 0 

1εzz = 
E33 

[σzz − ν31 σxx − ν32 σyy ] = 0 

⇒ σxx, σyy, σzz = 0 still equal zero 
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1ε = σyz G23 
yz 

1ε = σxz xzG13 

Differences are in εyz and εxz here as there are two different 
shear moduli (G23 and G13) which enter in here. 

for anisotropic material: 
coefficients of mutual influence and Chentsov coefficients 
foul everything up (no longer “simple” torsion theory). [can’t 
separate torsion from extension] 

Back to general case… 

Look at the Equilibrium Equations: 
∂σxz 

∂z 
= 0 ⇒ σxz = σxz ( ,x y) 

∂σyz 

∂z 
= 0 ⇒ σyz = σyz ( ,x y) 
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So, σxz and σyz are only functions of x and y 

∂σxz + 
∂σyz = 0 (10 - 8)

∂x ∂y 

We satisfy equation (10 - 8) by introducing a Torsion (Prandtl) 
Stress Function φ (x, y) where: 

∂φ


∂y 
= − σxz (10 - 9a)


∂φ


∂x 
= σyz (10 - 9b)


Using these in equation (10 - 8) gives: 

∂ 

 − ∂φ + 

∂  ∂φ ≡ 0
∂x ∂y ∂y  ∂x 

⇒ Automatically satisfies equilibrium (as a stress function is 
supposed to do) 
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Now consider the Boundary Conditions: 

(a) Along the contour of the cross-section 

Figure 10.3  Representation of stress state along edge of solid cross-
section under torsion 

outer contour is stress-free 
surface (away from load 
introduction) 

Figure 10.4  Close-up view of edge element from Figure 10.3 

σσσσxz (into page) 

σσσσyz (out of page) 

x 
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Using equilibrium: 

∑ Fz = 0 (out of page is positive) 

gives: 

−σxz dydz + σyz dxdz = 0 

Using equation (10 - 9) results in 

− − ∂φ 
dy


 +  ∂φ dx = 0

 ∂y  ∂x 

 ∂φ 
dy


 +  ∂φ 

dx
 = dφ

 ∂y  ∂x 

And this means: 
dφ = 0 

⇒ φ = constant 
We take: 

φ = 0 along contour (10 - 10) 
Note: addition of an arbitrary constant does not affect 

the stresses, so choose a convenient one (0!) 
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Boundary condition (b) on edge z = l 

Figure 10.5  Representation of stress state at top cross-section of rod 
under torsion 

Equilibrium tells us the force in each direction: 

Fx = ∫∫ σzx dxdy 

using equation (10 - 9): 

= 
yR ∂φ 

dxdy∫∫ yL ∂y 

where yR and yL are the geometrical limits of the cross-
section in the y direction 
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= − ∫ φ yR dx[ ] y
L 

and since φ = 0 on contour 

Fx = 0 O.K.  (since no force is applied in x-direction) 

Similarly: 

Fy = ∫ ∫  σzy dxdy = 0 
O.K. 

Look at one more case via equilibrium: 

Torque = Τ = ∫ ∫[xσzy − yσzx ] dxdy 

∂φ ∂φ = ∫∫ xB x 
∂x 

dxdy + ∫∫ y
y

L

R y 
∂y 

dydx 
xT 

where xT and xB are geometrical limits of the cross-section 
in the x-direction 

Integrate each term by parts: 

∫ AdB = AB − ∫ BdA 
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Set: 

A = x ⇒ dA = dx 

∂φ
dB = dx ⇒ B = φ

∂x 
and similarly for y 

x 
Τ = ∫ [ ]xφ B − ∫φdx] dy + ∫ [ ]yφ 

y
R − ∫φdy] dx 

x
T 

y
L 

= 0 = 0 
since φ = 0 in contour since φ = 0 in contour 

⇒ Τ = −  2 ∫ ∫φ dxdy (10 - 11) 

Up to this point, all the equations [with the slight difference in stress-strain 
of equations (10 - 6) and (10 - 7)] are also valid for orthotropic materials. 
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Summarizing 

• Long, prismatic bar under torsion 
• Rate of twist, k = constant 

∂w 
• εyz = kx + 

∂y 

∂w 
• εxz = - ky + 

∂x 

∂φ ∂φ 

∂y 
= − σxz ∂x 

= σyz• 

• Boundary conditions 

φ = 0 on contour (free boundary) 

Τ = −  2 ∫ ∫φ dxdy 
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Solution of Equations 

(now let’s go back to isotropic) 

Place equations (10 - 4) and (10 - 5) into equations (10 - 6) and 
(10 - 7) to get: 

 ∂wσyz = Gεyz = G 

k x +

∂y  
(10 - 12) 

σxz = Gεxz = G  − k y +	
∂w (10 - 13)
∂x  

We want to eliminate w. We do this via: 

∂
∂ 

x 
{Eq. (10 - 12)} − 

∂
∂ 

y 
{Eq. (10 - 13)} 

to get: 

∂σyz ∂σxz  ∂2w ∂2w  
∂x 

−
∂y 

= G k  +
∂ ∂  

+ k − 
y x x y  ∂ ∂  
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and using the definition of the stress function of equation (10 - 9) we 
get: 

∂2φ ∂2φ

∂x2 +

∂y2 = 2Gk (10 - 14)


Poisson’s Equation for φ 

(Nonhomogeneous Laplace Equation) 

Note for orthotropic material 

We do not have a common shear modulus, so we would get: 

∂ 

∂ 
+ 

∂ 

∂ 
= ( ) + ( ) ∂ 

∂ ∂  

2 

2 

2 

2 

2φ 

x 
k G 

w 
x y  

G Gxz yz yz xz 

⇒  We cannot eliminate w unless Gxz and Gyz are virtually the 
same 

+ −φ 

y 
G 
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Overall solution procedure: 

•	 Solve Poisson equation (10 - 14) subject to the boundary 
condition of φ  = 0 on the contour 

• Get T - k relation from equation (10 - 11) 
• Get stresses (σxz, σyz) from equation (10 - 9) 

• Get w from equations (10 - 12) and (10 - 13) 

• Get u, v from equations (10 - 1) and (10 - 2) 
• Can also get εxz, εyz from equations (10 - 6) and (10 - 7) 

This is “St. Venant Theory of Torsion” 
Application to a Circular Rod 

Figure 10.6  Representation of circular rod under torsion cross-section 
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“Let”: 

φ = C1 (x
2 + y2 − R2) 

This satisfies φ = 0 on contour since x2 + y2 = R2 on contour 

This gives: 

∂2φ ∂2φ 

∂x2 = 2C1 ∂y2 = 2C1 

Place these into equation (10-14): 

2C1 + 2C1 = 2Gk 

Gk ⇒ C1 = 
2 

Note: (10-14) is satisfied exactly 
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Thus: 

φ = 
Gk (x2 + y2 − R2 )2 

Satisfies boundary conditions and partial 
differential equation exactly 

Now place this into equation (10-11): 

Τ = −  2 ∫∫ φ dxdy 

Figure 10.7  Representation of integration strip for circular cross-section 

R + 
Τ = Gk ∫ ∫- R  -

R  -

2 

2 

y 

y 

2

2

(R2 − y2 − x2 ) dxdy
-R 
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+ 

Τ = Gk ∫− 

R

R 




 (R2 − y2 ) x − 

x
3

3 


 

y 

y 

2 

2 

R

R

2 

2 

− 

− 

dy 
− 

4 R / 
= Gk 

3 ∫−R 
(R2 − y2 )3 2

dy 

+R
/ 

= Gk
4 1  y(R2 − y2 )3 2  

+ 
3

R2y R2 − y2 + 
3

R4 sin−1 y  
3 4  2 2 R

−R 

= 0 = 0 = 
3 

R4 π 
2 

This finally results in 
πR4 

Τ = Gk 
2 
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Since k is the rate of twist: k = 
dα , we can rewrite this as: 
dz


dα Τ= 
dz GJ 

where:  πR4 
J = torsion constant 


= 

2 
for a circle

 

α = amount of twist 

and: 

GJ = torsional rigidity 

Note similarity to: 

d w  

dx 

M 
EI 

2 

2 = 

where: 
(I) J - geometric part 
(E) G - material part 

EI = bending rigidity 
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To get the stresses, use equation (10 - 9): 

∂φ Τσ = = Gkx = xyz ∂x J 

Τσxz = − ∂φ = −  Gky = − 
J

y
∂y 

Figure 10.8  Representation of resultant shear stress, τres, as defined 

Define a resultant stress: 

τ = σzx zy 
2 σ + 2 

Τ = 
J 

x 2 + y2 

= r 
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The final result is: 

τ =	 Τr 
J 

for a circle 
Note: similarity to 

 σx = −  
Mz 

Ι  
τ always acts along the contour (shape) 

resultant 

Figure 10.9  Representation of shear resultant stress for circular 
cross-section 

Cross-Section 

No shear 
stress on 
surface 
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Also note: 
1. Contours of φ: close together near edge ⇒  higher τ 

Figure 10.10  Representation of contours of torsional shear function 

2. Stress pattern (τ) creates twisting 

Figure 10.11  Representation of shear stresses acting perpendicular to 
radial lines 

magnitudes of τres 
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To get the deflections, first find α: 
dα Τ = 
dz GJ 

(pure rotation of cross-section) 
integration yields: 

Τzα = + C1GJ 
Let C1 = 0 by saying α = 0 @ z = 0 

Use equations (10 - 1) and (10 - 2) to get: 

Τz 
u = −  yzk = −  y 

GJ 

Τz 
v = xzk = x 

GJ 

Go to equations (10 - 12) and (10 - 13) to find w(x, y): 

Equation (10 - 12) gives: 
∂w σyz= − kx
∂y G 
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using the result for σyz: 

∂w Gkx = − kx = 0
∂y G 

integration of this says 

w(x, y) = g1 (x) (not a function of y) 

In a similar manner… 

Equation (10 -13) gives: 
∂w = σxz + ky
∂x G 

Using σxz = -Gky gives: 

∂w = −  
Gky + ky = 0

∂x G 
integration tells us that: 

w(x, y) = g2 (y) (not a function of x) 

Using these two results we see that if w(x, y) is neither a function of 
x nor y, then it must be a constant. Might as well take this as zero 

Paul A. Lagace © 2001 Unit 10 - p. 31 



MIT - 16.20 Fall, 2002 

(other constants just show a rigid displacement in z which is 
trivial) 

⇒  w(x, y) = 0 No warping for circular cross-sections 

(this is the only cross-section that has no 
warping) 

Other Cross-Sections 

In other cross-sections, warping is “the ability of the cross-section to 
resist torsion by differential bending”. 

2 parts for torsional rigidity 

• Rotation 

•	 Warping 

Ellipse 
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 x2 y2 
φ = C1  a2 + 

b2 − 1 
 

Equilateral Triangle 

φ = C1 
 x − 3y + 

2   3y a x  + 
1

a  a x  + − 
2   

3   3   3  

Rectangle 

Paul A. Lagace © 2001 Unit 10 - p. 33 



MIT - 16.20 Fall, 2002 

π πφ = ∑  Cn + Dn cosh 
n y cos 

n x  

n odd b  a 

Series: (the more terms you take, the better the 
solution) 

These all give solutions to ∇ 2 φ = 2GK subject to φ = 0 on the boundary. In 
general, there will be warping 

see Timoshenko for other relations (Ch. 11) 

Note: there are also solutions via “warping functions”. This is a 
displacement formulation 

see Rivello 8.4 

Next we’ll look at an analogy used to “solve” the general 
torsion problem 
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