Computational Methods for the Euler Equations

Before discussing the Euler Equations and computational methods for them, let’s
look at what we’ve learned so far:

Method Assumptions/Flow type
2-D panel 2-D, Incompressible, Irrotational Inviscid
Vortex lattice 3-D, Incompressible, Irrotational Inviscid, Small

disturbance

Potential method 3-D, Subsonic compressible, Irrotational, Inviscid,
Prandtl-Glauert Small disturbance
Euler CFD 3-D, Compressible (no M_ limit), Rotational,

Shocks, Inviscid
The only major effect missing after this week will be viscous-related effects.

2-D Euler Equations in Integral Form

Consider an arbitrary area (i.e. a fixed control volume) through which flows a

compressible inviscid flow:
n

n = outward pointing normal (unit length)
dS = elemental (differential) surface length Ads

nds = dyi —dxj

Note: Path around surface is taken so that interior of control volume is on left.



Computational Methods for the Euler Equations

Conservation of Mass
(rate of change) (rate of mass rowJ 0

+
of mass inC outof C
Mass inC = ”C pdA

where p = destinyof fluid
d
= rateof change= EJ'J'C pdA

of massinC

Now, the rate of mass flowing out of C:
Mass flow out of C = ﬂc ou e NdS u = velocity vector

%”deA+§&pUOﬁdS:0

Conservation of x-momentum

Recall that: total rate of change momentum = _forces

For x-momentum this gives:
(rate of change of j [rateof X —momflow

. + =2 Forces in x-direction
X —momentum inC outof C

d 1 " . . .
aﬂc pudA + ﬁc put endS =2, Forces in x-direction

Now, looking closer at x-forces, for an inviscid compressible flow we only have

pressure (ignoring gravity). Normal to surface

X
— pndS

E"\ Into surface

Recall pressure acts normal to the surface

= ¥ Force sinx=—§ pneids
X

Tj

Gives x-direction
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%”pudA+ §pu0-ﬁds :—§pﬁ-i‘d$
[ & &

Conservation of y-momentum

This follows exactly the same as the x-momentum:

%”/’VdA+ §pvﬁoﬁd8 :—§ pn e jdS
C & x

Conservation of Energy

Recalling your thermodynamics:
total rate of change work doneon heat added

of energy in C j (fluid inC jJ{to C j

For the Euler equations, we ignore the possibility of heat addition.
total rate of change} _ [rate of changeof j .\ [rate of energyj

of energy in C energy in C flowout of C

The total energy of the fluid is:
pE = /oe+%p(u2 +v?)

f —
Total /'Internal

energy energy gﬁg;

Note: e=c,T where c, =specific heat at constant volume

Static temperature

So,
(total rate of change

d
=— || pEdA+ ¢ pEU e NdS
of energy in C j dtgp ip )

The work done on the fluid is through pressure forces and is equal to the
pressure forces multiplied by (i.e. acting in) the velocity direction:

(work) = §(— pn)e GdS
X
A
Pressure force
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N %”pEdA+ § pEd o ndS = —§ pn e UdS
C .8 2.9

Summary of 2-D Euler Equations
d o
a”pdA+ §pu-nds =0

C 5K

%”‘pudA+ §pquﬁdS :—igpﬁonS
C & 2.

%”pvdm §pv0oﬁds =—§pﬁ-]ds
C & &x

%”pEdA+ § pEU o nidS = —§ pn e ndS

C x &
These are often written very compactly as:
%'[J;UdAJric(FT +Gj)enids =0

Y pu el
U | _|put+p _|pw
e puv o+ p
pE puH pPvH
Conservative Flux vector Flux vector for
state vector for x-direction y-direction

H =total enthalpy= E + %

Ideal gas: p = pRT = (7—1){pE —%p(u2 +v2)}
A Finite Volume Scheme for the 2-D Euler Egns.

Here’s the basic idea:
(1) Divide up (i.e. discretize) the domain into simple geometric shapes (triangles
and quads)
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Looking at this small region:

VAN

Cell 0 is surrounded by cells 1, 2, & 3.
i.e. cell 0 has 3 neighbors: cell 1, 2, & 3.
—

Nearest neighbors
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(2) Decide how to place the unknowns in the grid.
(a) Cell-centered: cell-average values of the conservative state vector are
stored for each cell.
(b) Node-based: point values of the conservative state vector are stored at
each node.
The debate still rages about which of these options is best. We will look at cell-
centered schemes because these are easiest (although not necessarily the
best). Also, they are very widely used in the aerospace industry.

(3) Approximate the 2-D integral Euler equation on the grid to determine the

chosen unknowns.
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Mach Number - Original Mesh
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Let's look in detail at step (3):

Cells: 0,1, 2, 3
Nodes: a, b, c, d, e, f

Cell-average unknowns:

Po P1
| (ou)s | (ou); B B
U, = (,UV)O U, = (,0\/)1 Uy =, Ug =
(£E ), (0E),

Specifically, we define U, as:

C,=cell0
U, Ei”UdA where { 0
A, 7% A, =areaof cell 0

Now, we apply conservation eqgns:
d - = —
ajjcou(;mﬁco (Fi +Gj)ends =0

The time-derivative term can be simplified a little:

d du
aﬂCOUdA=A0 ; 0

The surface flux integral can also be simplified a little:
- = — b - = 3
ft;a:o (FT +Gj)ends = L (FT +Gj)ends

+J.bc (FT +Gj )e ndS

+[[(FT +Gj)enids
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Combining these expressions:

AOd

U, b/ . -\ = €l = =\
dt +.L (F' * GJ)' nds + Ib (F' +GJ). nas No approximations so far!

- La(FT +Gj)endS =0

Now, we make some approximations. Let’s look at the surface integral from
a—b:

[ (FT +Gf)e nds

>l

ab

The normal can easily be calculated since the face is a straight line between
nodes a & b. Recall, the unknowns are stored at all centers. So, what would be a
logical approximation for :

I: (Fr + Gj). n,,dS =?2??

Option #1=
Option #2=
Note: Option #1 = option #2 in general.

There is very little difference in practice between these options. Let’s stick with:

Sab = I: (Fr + G]). ﬁabdS = |:%(FO + Fl)r +%(GO + Gl)]:| * ﬁabASab
Spe = IDC(FT +Gj)e 11, dS = {%(Fo +F )0 Jr%(Go +Gz)ﬂ * Ny AS,,

ca

S, = | (F7 +Gj)en,,ds = E(F0 +F ) +%(G0 + GS)T} o, AS

Where
Fo = F(Uo) G, EG(Uo)
F = F(Ul) G, EG(Ul)
F, EF(Uz) Gzze(uz)
F = F(Ua) G, EG(Ua)
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du,

Finally, we have to approximate A, m somehow. The simplest approach is

forward Euler:
du

0 ~ ~ ~ _
—— 4+ 3 T3 +3, =0

AOdt

U n+1l _U n
0 0 ~n ~n ~n _
AO—At + 30 T3 +3., =0

Where U] EUO(t”) and t" = nAt, n =iteration

And 3}, etc. are defined as:

30, = E(FO” +F" )T +%(GQ + Gf)]} en AS,,

Fr=FU)) efc.
R =FU!)

For steady solution, basic procedure is to make a guess of U at t =0 and then
iterate until the solution no longer changes. This is called time marching.

Question

What assumptions have we made in developing our 2-D Euler Equation Finite
Volume Method?
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