Quick Visit to Bernoulli Land
Although we have seen the Bernoulli equation and seen it derived before, this
next note shows its derivation for an uncompressible & inviscid flow. The
derivation follows that of Kuethe &Chow most closely (I like it better than
Anderson)."

Start from inviscid, incompressible momentum equation

There is a vector calculus identity:
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From here, we can make the final re-arrangement:
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Two common applications:
1. Steady irrotational flow
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Quick Visit to Bernoulli Land

2. Steady but rotational flow
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This is a vector equation. If we dot product this into the streamwise
direction:
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Vortex Panel Methods?

Step#1: Replace airfoil surface with panels
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Original airfoil m-panels (m+1 nodes)

Step #2: Distribute singularities on each panel with unknown strengths

In our case we will use vortices distributed such that their strength varies linearly
from node to node:

Recall a point vortex at the origin is:
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A point vortex at x,y is:
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Next, consider an arbitrary panel:

Vortex of strength
y(sj)ds
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view dsj

Midpoints will
be (>?j,7j)
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Atany s, we will place a vortex with strength 7(sj)ds:
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Thus, the potential at any (x, y)due to the entire panel ; is:
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We will assume linear varying y on each panel:
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Quick Visit to Bernoulli Land

With this type of panel, we have m+1 unknowns = y, v, 75 7,1 7.V » SO WE
need m+1 equations.

Step#3: Enforce Flow Tangency at Panel Midpoints

The next step is to enforce some approximation of the boundary conditions at the
airfoil surface. To do this, we will enforce flow tangency at the midpoint of each
panel.

Panel method lingo: control point is a location where i e 7 = 0 is enforced.

To do this, we need to find the potential and the velocity at each control point.

The potential has the following form:

_ [ freestream N individual panel
B potential # pamels potential

Suppose freestream has angle « :
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The required boundary condition is —=(x,3,)=0 forall i=1->m

1

So, let’s carry this out a little further:
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component of freestream normal
to surface of panel i

normal velocity due to panel j
at control point of panel i
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And recall y(sj): Y +(7j+1 —yj)S—".
J

We can re-write these integrals in a compact notation:
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Ly (s, -9,

Iy( / tan”| 22 ds= C,7;+Cp 7
27 n, x—X, v

i»Vi C, 1= Influence of panel j due to
X yl node j on control point of panel i

i.e.CnL/_;/j =normal velocity from panel ; due to node ; on control point of panel i .
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Quick Visit to Bernoulli Land

Cn2,-,» = Influence of panel ; due to node ;j-+1 on control point at panel i

— Total normal velocity at control point of panel i due to panel j=C,, 7, +C,, 7.,
So, let’s look at the control point normal velocity

So, for panel i, flow tangency looks like:

i(CmU_}/j + anu_;/jﬂ) =V, (cosoaT +sin a])-ﬁi , foralli=1—->m

j=1
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We can write this as a set of m equations for m+1 unknowns.
Question: What can we do for one more equation?

Step#4: Apply Kutta condition

We need to relate Kutta condition to the unknown vortex strengths ;. To do this,
consider a portion of a vortex panel.

v
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16.100 2002 5



Put a contour about differential element ds

Quick Visit to Bernoulli Land
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Recall:= yds = —[V,dn—U,ds - V,dn +U,ds]
=(V,-V,)dn—(U,-U,)ds

Now let dn & ds — 0:
dn — O, yds :—(U1 -U,)ds

y=U,-U, or
7 =U,, =U,ponm» In general
So, since the Kutta condition requires U,,, =U,,,,, at TE:

7,. =0, Kutta condition

For the vortex panel method, this means:

71+7/m+1:0

Step#5: Set-up System of Equations & Solve
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usin=0@i=1 _111 I, 119__71_ V°°n1
un=0@i=2 I, I e V:’Oﬂz
L L, I 73
141
I, ==
]61
171
iieii = 0@i =m I, Vs Vs
Kutta 1 0 0 0 | 0
< e L S
I V4 an
Where I, =total influence of node ; at control point i
For example: I, = Cn137 + an%
6 7
5 8 @® Nodes
X Control points
4 3 2 !

The problem thus reduces to Ax = b, or, using our notation
Iy=Vv,,

which we solve to find the vector of y’s!
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Step #6: Post-processing

The final step is to post-process the results to find the pressures and the lift
acting on the airfoil.

L'=pV.I'=plV, q.D yds

airfoil

So, for our method, this reduces to:

Vortex Panel Method Summary

In practice, the vortex panel method used for airfoil flows is a little different than
the strategy used in the windy city problem. Here’'s a summary:

Step #1: Replace airfoil surface with panels

< I:::::::}_;‘}‘mﬂ
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Note: the trailing edge is double-numbered = m + 1 points, m panels .

Step #2: Distribute vortex sinqularities with linear strength variables on each

panel V(Sj)

5
y(sj):7j+(yj+l_7j)s—
/ ()

Y(j+1)
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Quick Visit to Bernoulli Land

This means we have m+1 unknowns:

Y1.Y2.73, Y m.V m

Step #3: Enforce flow tangency at panel midpoints

uen =0 at midpoint of every panel

= |m equations

Step#4: Apply Kutta condition

Kutta condition becomes:

j/tAe.:(): 7/1+7/m+1:0

= |m+1 equations & m +1 unknowns
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