
J. Peraire, S. Widnall 
16.07 Dynamics 

Fall 2008 
Version 2.0 

Lecture L27 - 3D Rigid Body Dynamics: Kinetic Energy;

Instability; Equations of Motion


3D Rigid Body Dynamics 

In Lecture 25 and 26, we laid the foundation for our study of the three-dimensional dynamics of rigid bodies 

by: 1.) developing the framework for the description of changes in angular velocity due to a general motion 

of a three-dimensional rotating body; and 2.) developing the framework for the effects of the distribution of 

mass of a three-dimensional rotating body on its motion, defining the principal axes of a body, the inertia 

tensor, and how to change from one reference coordinate system to another. 

We now undertake the description of angular momentum, moments and motion of a general three-dimensional 

rotating body. We approach this very difficult general problem from two points of view. 

The first is to prescribe the motion in term of given rotations about fixed axes and solve for the force system 

required to sustain this motion. 

The second is to study the ”free” motions of a body in a simple force field such as gravitational force acting 

through the center of mass or ”free” motion such as occurs in a ”zero-g” environment. The typical problems 

in this second category involve gyroscopes and spinning tops. The second set of problems is by far the more 

difficult. 

Before we begin this general approach, we examine a case where kinetic energy can give us considerable 

insight into the behavior of a rotating body. This example has considerable practical importance and its 

neglect has been the cause of several system failures. 

Kinetic Energy for Systems of Particles 

In Lecture 11, we derived the expression for the kinetic energy of a system of particles. Here, we derive the 

expression for the kinetic energy of a system of particles that will be used in the following lectures. A typical 

particle, i, will have a mass mi, an absolute velocity vi, and a kinetic energy Ti = (1/2)mivi ·vi = (1/2)mivi 
2 . 

The total kinetic energy of the system, T , is simply the sum of the kinetic energies for each particle, 

n n n� � 1 2 1 2 
� 1 2T = Ti = mivi = mvG + mivi

� , .
2 2 2 

i=1 i=1 i=1 
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where v� is the velocity relative to the center of mass. Thus, we see that the kinetic energy of a system of 

particles equals the kinetic energy of a particle of mass m moving with the velocity of the center of mass, 

plus the kinetic energy due to the motion of the particles relative to the center of mass, G. 

We have said nothing about the conservation of energy for a system of particles. As we shall see, that 

depends upon the details of internal interactions and the work done by the external forces. The same is 

true for a rigid body. Work done by internal stresses, or energy lost due to the complexities of a system 

described as a rigid body, but which in reality may have internal modes which drain energy, will act to 

decrease the kinetic energy. Thus, although we can confidently relate angular momentum to external forces, 

we have no such confidence in dealing with conservation of energy. As we shall see, this has important 

technological implications, especially for the stability of spacecraft. In this section we consider the particles 

to be components of a rigid body. 

Kinetic Energy for a 3D Rigid Body 

For a rigid body, the summation i = 1, n becomes an integral over the total mass M. 

1 1 1 
T = v 2dm = Mv2 v�2dm . G +2 2 2m m 

For a rigid body, the velocity relative to the center of mass is written 

�v� = ω� × �r� (1) 

where �r� is the vector to the mass dm for the center of mass G. 

Using the vector identity 

(A� × B� ) C� = A� (B� × C� ), (2)· · 

we have 

v�2 = �v� �v� = (�ω × �r�) (ω� (�r� × (ω� × �r�)) = �ω �r� × �v�)· · · · 

. 

Therefore, � � 
v�2dm = �ω �r� × �v�dm = ω� H� G, (3)· · 

m m 
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and the total expression for kinetic energy of a rigid body can be written 

1 1 1 
T = Mv2 + ω� H� G = �vG.L�G + �ω H� G (4)

2 G · 
2 2 

· 

where ML�G is the linear momentum. 

If there is a fixed point O about which the body rotates, then 

1 
T = �ω H� 02 

· 

where H� 0 is the angular momentum about point O. Even if there is no fixed point about which the body 

rotates, there is an instantaneous center of rotation C. In some situations, it may be useful to write 

1 
TC = �ω H� C (5)

2 
· 

If the angular velocity is expressed in principal axes, then the angular momentum about the center of mass 

can be written H� G = Ixxωx �i + Iyyωy �j + Izzωz 
�k so that the kinetic energy can be written 

1 1 
T =

2 G + 2 
ωx 

2 + Iyyωy 
2 + Izzωz 

2)Mv2 (Ixx (6) 

The above expressions for kinetic energy are useful to apply the principle of work and energy. We see that 

the kinetic energy has two components: one is due to the translation, 1 Mv2 . The other is due to rotation. 2 G 

The rotational component can be written as 

1 1 
TR = ω� H� G = (Ixxωx 

2 + Iyyωy 
2 + Izzωz 

2) (7)
2 

· 
2

We have no assurance that energy will be conserved. Internal motions can dissipation energy. This is not true 

for angular momentum: internal forces and motions will not change angular momentum. The implications 

of this can be profound. 

Consider a body spinning about the z axis of inertia with no external moments. Then the angular momentum 

will be constant and since it is a vector, it will always point in the z direction so that H� G = Hz 
�k will be 

constant. Now let us assume that Izz < Ixx and Izz < Iyy. In this case, for a given angular momentum, 

the kinetic energy is a maximum, since T = 1
2 Hz 

2/Izz, and Izz is the smallest moment of inertia. If there is 

any dissipation mechanism–structural damping, fuel sloshing, friction–then the angular momentum will stay 

constant in magnitude and direction while the energy decreases. The only way, that the energy can decrease 

while keeping the angular momentum constant is to change the axis of spin to one with a larger moment 

of inertia while keeping the vector direction and magnitude of the angular momentum vector constant. 

Therefore, if the body tumbles and begins to spin about the x or y body-fixed axis, the kinetic energy 

becomes T = 1
2 Hz 

2/(IxxorIyy). The kinetic energy will be reduced since both Ixx and Iyy are greater than 

Izz . 
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The sketch show the process by which this would occur. An initial spin about the body’s z axis will transition 

over time to a spin about the body’s x or y axis, while keeping the H� G constant in magnitude and direction. 

The initial state is simple; the final state is simple; the intermediate states are complex in that the body 

axis is not aligned with the rotation vector, much like a spinning top performing a complex motion. Do we 

have to worry about this? 

The first American satellite, Explorer 1, was built by the Jet Propulsion Laboratory in Pasadena, and 

launched from Canaveral on 31 January 1958 by a modified Jupiter-C missile into an orbit ranging between 

354 kilometers and 2,515 kilometers at an angle of 33 degrees to the equator. The satellite was long and 

slender. It was spin-stabilized about its long axis–the one with the smallest moment of inertia. Spin 

stabilization has advantages in that the angular momentum remains fixed in direction in space under passive 

control, if it’s stable! The satellite had flexible antenna which vibrated and dissipated energy. During the 

mission, it unexpectedly suffered an attitude failure in that it tipped over and began to spin about the axis 

with the maximum moment of inertia. Other space systems as well as re-entry vehicles are prone to this 

phenomena. 
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Governing Equations for Rotational Motion of a Three-Dimensional 

Body 

The governing equations are those of conservation of linear momentum L = MvG and angular momentum, 

H = [I]ω, where we have written the moment of inertia in matrix form to remind us that in general the 

direction of the angular momentum is not in the direction of the rotation vector ω. Conservation of linear 

momentum requires 

L̇ = F (8) 

Conservation of angular momentum, about a fixed point O, requires 

Ḣ0 = M (9) 

or about the center of mass G 

ḢG = M G (10) 

We first examine cases in which the motion is specified and our task is to determine the forces and moments. 

Example: Rotating Skew Rod 

We consider a simple example which illustrate the effect of rotation about a non-principal axis. In this case, 

we consider two masses equal m1 and m2 attached to a massless rigid rod of length 2l aligned from the 

horizontal by an angle α and rotating about the z axis with constant angular velocity ωk. We examine this 

problem at the instant when the rod is aligned with the x and z axis. Because of symmetry, the center of 

mass is at the origin. Therefore, we consider only the change in angular momentum. Because the magnitude 

of the angular velocity ω is constant, we are concerned only with its change in direction. 
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The angular momentum for this system is H = r × mivi. For this case, the velocity for mass m1 is 

v1 = ωlcosαj, while for mass m2 the velocity is v2 = −ωlcosαj while r1 = lcosαi + lsinαk and r2 = 

−lcosαi − lsinαk. At this instant of time, the angular momentum is in the x, z plane and of magnitude 

H = −2ml2ωcosαsinαi + 2ml2ωcos2αk (11) 

Since the axis about which the rotation takes place is not a principal axis, it is no surprise that the angular 

momentum vector is not aligned with the angular velocity vector. In this simple case, since we are dealing 

with two mass points, the rod has zero moment of inertia when rotate about is axis. Therefore the angular 

momentum vector is perpendicular to the rod. As the skew rod rotates about the z axis, the angular 

momentum changes as 

Ḣ = ω × H = −2mω2l2sinαcosαj (12) 

resulting in a ”required” moment about the y axis to sustain the motion of 

M = −2mω2l2sinαcosαj (13) 

This moment has a physical interpretation in term of centripetal acceleration. As the rod rotates with 

angular velocity ω, the individual mass points experience a centripetal acceleration directed towards the 

z axis of a = −ω2lcosαi. This requires an external force directed along the i direction: on m1, a force of 

F 1 = −ω2mlcosαi; on m2, a force of F 2 = ω2mlcosαi ; no net force is required because the body is supported 

at its center of mass. These forces can only be supplied/resisted by an external moment applied at the origin, 

where the rod is supported, a moment about the origin of M = r1 × F 1 + r2 × F 2 = −2mω2l2sinαcosαj, 

which is the moment required to sustain the motion. 

As the rod rotates about the z axis, the moment or torque required to sustain the motion also rotates. Thus 

any fixture that is used to attach the rotating rod to the axle must sustain this torque. 

Observe that this force goes to zero for α = 0 and α = π/2. For these α’s, the rod would be rotating about 

a principal axis. 

Example: Rotating Cylinder 

The previous discussion can easily be extended, replacing the rod by a cylinder. In this case the moment of 

inertia Ix�x� is not equal to 0. Therefore, the angular momentum vector is not perpendicular to the cylinder 

but is at an angle determined by the relative values of Iz�z� and Ix�x� . If the body is not a ”cylinder”, i.e. 

Ix� x� =� Iy�y� =� Iz�z� , then the result is qualitatively similar but the angular momentum vector H is not in 

the plane formed by the cylinder axis and ω. 
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Example: Use of the inertia tensor 

These examples may be treated using the more formal description in term of the inertia tensor. The principal 

axis of this system is clearly along the rod joining the two masses, as shown in the figure. If we treat the 

masses as mass points, there is no moment of inertia about the x� axis, while the moments of inertia about 

the y� and z� axis are equal and equal to Iz�z� = Iy�y� = 2ml2 . The coordinate transformation from the 

principal axes x�, y� to the x, y axis is ⎞⎛⎞⎛⎞⎛ ⎟⎟⎟⎠ 
= 

⎜⎜⎜⎝ 

cosα 0 −sinα 

0 1 0 
⎜⎜⎜⎝ 

⎟⎟⎟⎠ 

x� 

y� 
⎟⎟⎟⎠ 

. (14) 

x⎜⎜⎜⎝ y 

z sinα 0 cosα z� 

The inertia tensor in the x, y, z system is obtained by the transformation introduced in Lecture 26: [I] = 

[T ][I �][T ]T . ⎞⎛⎞⎛⎞⎛⎞⎛ ⎜⎜⎜⎝ 

Ixx −Ixy −Ixz 

−Ixy Iyy −Iyz 

⎟⎟⎟⎠ 
= 

⎜⎜⎜⎝ 

cosα 0 −sinα 

0 1 0 
⎜⎜⎜⎝ 

⎟⎟⎟⎠ 

0 0 0 cosα 0 sinα ⎜⎜⎜⎝ 

⎟⎟⎟⎠ 

⎟⎟⎟⎠ 
. (15)0 2ml2 0 0 1 0 

−Ixz −Iyz Izz sinα 0 cosα 0 0 2ml2 −sinα 0 cosα 

resulting in [I] for the inertia matrix in the x, y, z system as ⎞⎛ 

[I] = 2ml2 
⎜⎜⎜⎝ 

sin2α 0 −cosαsinα 

0 1 0 
⎟⎟⎟⎠ (16). 

−cosαsinα 0 cos2α 
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This confirms that the x and z axis are not principal axes. The angular momentum vector is then ⎞⎛⎞⎛⎞⎛⎞⎛ 
HGx sin2α 0 −cosαsinα 0 −cosαsinα ⎜⎜⎜⎝ HGy 

⎟⎟⎟⎠ 
= 2ml2 

⎜⎜⎜⎝ 0 1 0 
⎜⎜⎜⎝ 

⎟⎟⎟⎠ 0 
⎟⎟⎟⎠ 

= 2ml2ω 
⎜⎜⎜⎝ 0 

⎟⎟⎟⎠ (17) 

HGz −cosαsinα 0 cos2α ω cos2α 

for the angular momentum. Leading to the required moment to sustain the motion as 

M = Ḣ = ω × H = −2l2mω2cosα sin αj (18) 

in agreement with equation (13). 

Example: Two-Bladed Wind Turbines 

An exciting application of the analysis of the rotating skew rod is to the operation of a two-bladed wind 

turbine. Recall that the analysis predicted that a constant moment about a horizontal axis is required from 

the support structure if the skew rod is to rotate about the vertical axis with angular velocity ω. This 

analysis is also valid if α is a function of time if we add the angular momentum about the y axis as a result of 

the ”propeller” rotating about its own axis. Let α = Ωt, that is the rod rotates about the horizontal y axis 

through its center of mass and perpendicular to the plane containing the rod and masses, like a propeller. 

In addition, it rotates about the z axis following the previous analysis of the rotating skew rod. The total 

angular momentum is then the result from the previous analysis with α = Ωt; the angular momentum of 

the skew rod becomes Hs = −2ml2ωcos(Ωt)sin(Ωt)i + 2ml2ωcos2(Ωt)k plus angular momentum due to the 

rotation of the propeller of magnitude Hp = −2Ωml2j. The additional change in angular momentum due to 

the ”propeller” rotation is simply Ḣp = ω × Hp. This is constant in time in a coordinate system rotating 

with the plane of the propeller. The motion requires an applied steady moment. 

8 



The total angular momentum of this configuration is then the sum of that for the skew rod plus that for 

the rotation of the propeller about the y axis. However, the additional change of angular momentum occurs 

only through the action of ωk in rotating the angular momentum of the propeller. The angular velocity of 

the propeller, Ω does not rotate the angular momentum vector of the skew rod. 

H = Hs + Hp = −2l2mωcos(Ωt)sin(Ωt)i − 2ml2Ωj + 2ml2ωcos2(Ωt)k (19) 

Since only ωk rotates the angular momentum vector, we have from Coriolis theorem that the rate of change 

of angular momentum is 

Ḣ = (ωk) × (Hs + Hp) (20) 

Then the moment required is 

M = 2l2 m(ωΩi − ω2 cos(Ωt)sin(Ωt)j + 0k. (21) 

Note the unsteady behavior of the required moment with time. The moment required to produce the 

propeller rotation about j, and to move the direction of this rotation about the z axis with angular velocity 

ω is steady; the moment required to produce the rotation of the skew rod about k is unsteady. This is due 

to the imbalance in inertia. At various times in its motion, the device is rotating about the z axis ( k) which 

is not a principal axis for the configuration. 

Consider this problem as a model for a two-bladed wind turbine. The wind turbine will happily rotate about 

its y axis with angular velocity Ω. But wind turbines must yaw to face into a new wind direction. This 

requires for a short time an angular velocity ω about the z axis. From our analysis, as the wind turbine 
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rotates in yaw to face the new wind direction, an oscillatory moment of M = −2l2mω2cos(Ωt) sin(Ωt)j will 

be exerted on the support. This undesirable oscillatory load will be eliminated if the wind turbine has three 

blades so that all directions in the x, z plane are principal axis. The figure shows how this idea has caught 

on. 

ADDITIONAL READING 

J.L. Meriam and L.G. Kraige, Engineering Mechanics, DYNAMICS, 5th Edition 

5/1, 5/2, 5/3, 5/4 (review) , 5/5, 5/6 (review) 
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