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Lecture L26 - 3D Rigid Body Dynamics: The Inertia Tensor 

In this lecture, we will derive an expression for the angular momentum of a 3D rigid body. We shall see that 

this introduces the concept of the Inertia Tensor. 

Angular Momentum 

We start from the expression of the angular momentum of a system of particles about the center of mass, 

HG, derived in lecture L11, 
n n

HG = (ri
� × mi(ω × r�i)) = miri

�2ω (1) 
i=1 i=1 

n n � 
HG = (ri

� × mi(ω × r�i)) = miri
�2ω = r� × v� dm (2) 

i=1 i=1 m 

HG = r� × v� dm . 
m 

Here, r� is the position vector relative to the center of mass, v� is the velocity relative to the center of mass. 

We note that, in the above expression, an integral is used instead of a summation, since we are now dealing 

with a continuum distribution of mass. 

For a 3D rigid body, the distance between any particle and the center of mass will remain constant, and the 

particle velocity, relative to the center of mass, will be given by 

v� = ω × r� . 
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Thus, we have, � � 
HG = r� × (ω × r�) dm = [(r� r�)ω − (r� ω)r�] dm . · · 

m m 

Here, we have used the vector identity A × (B × C) = (A C)B − (A B)C. We note that, for planar bodies · · 

undergoing a 2D motion in its own plane, r� is perpendicular to ω, and the term (r� · ω) is zero. In this case,


the vectors ω and HG are always parallel. In the three-dimensional case however, this simplification does


not occur, and as a consequence, the angular velocity vector, ω, and the angular momentum vector, HG,


are in general, not parallel.


In cartesian coordinates, we have, r� = x�i + y�j + z�k and ω = ωxi + ωyj + ωzk, and the above expression


can be expanded to yield,


HG = ωx (x�2 + y�2 + z�2) dm − (ωxx
� + ωyy

� + ωzz
�)x� dm i � �m �m � 

+ ωy (x�2 + y�2 + z�2) dm − (ωxx
� + ωyy

� + ωzz
�)y� dm j � �m �m � 

+ ωz (x�2 + y�2 + z�2) dm − (ωxx
� + ωyy

� + ωz z
�)z� dm k 

m m 

= ( Ixxωx − Ixyωy − Ixz ωz ) i 

+ (−Iyxωx + Iyyωy − Iyzωz) j 

+ (−Izxωx − Izy ωy + Izzωz) k . (3) 

The quantities Ixx, Iyy, and Izz are called moments of inertia with respect to the x, y and z axis, respectively, 

and are given by 

Ixx = (y�2 + z�2) dm , Iyy = (x�2 + z�2) dm , Izz = (x�2 + y�2) dm . 
m m m 

We observe that the quantity in the integrand is precisely the square of the distance to the x, y and z axis, 

respectively. They are analogous to the moment of inertia used in the two dimensional case. It is also clear, 

from their expressions, that the moments of inertia are always positive. The quantities Ixy, Ixz, Iyx, Iyz, Izx 

and Izy are called products of inertia. They can be positive, negative, or zero, and are given by, 

Ixy = Iyx = x�y� dm , Ixz = Izx = x�z� dm , Iyz = Izy = y�z� dm . 
m m m 

They are a measure of the imbalance in the mass distribution. If we are interested in calculating the angular 

momentum with respect to a fixed point O then, the resulting expression would be, 

HO = ( (Ixx)O ωx − (Ixy)O ωy − (Ixz )O ωz ) i 

+ (−(Iyx)O ωx + (Iyy)O ωy − (Iyz)O ωz) j 

+ (−(Izx)O ωx − (Izy )O ωy + (Izz )O ωz) k . (4) 
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Here, the moments of products of inertia have expressions which are analogous to those given above but 

with x�, y� and z� replaced by x, y and z. Thus, we have that 

(Ixx)O = (y 2 + z 2) dm , (Iyy)O = (x 2 + z 2) dm , (Izz )O = (x 2 + y 2) dm , 
m m m 

and, 

(Ixy )O = (Iyx)O = xy dm , (Ixz)O = (Izx)O = xz dm , (Iyz)O = (Izy)O = yz dm . 
m m m 

The Tensor of Inertia 

The expression for angular momentum given by equation (3), can be written in matrix form as, 

⎞⎛⎞⎛⎞⎛ ⎜⎜⎜⎝ 

HGx 

HGy 

⎟⎟⎟⎠ 
= 

⎜⎜⎜⎝ 

Ixx −Ixy −Ixz 

−Iyx Iyy −Iyz 

⎜⎜⎜⎝ 

⎟⎟⎟⎠ 

ωx 

ωy 

⎟⎟⎟⎠ 
. (5) 

HGz −Izx −Izy Izz ωz 

or, 

HG = [IG]ω, (6) 

where [IG] is the tensor of inertia (written in matrix form) about the center of mass G and with respect to 

the xyz axes. The tensor of inertia gives us an idea about how the mass is distributed in a rigid body. 

Analogously, we can define the tensor of inertia about point O, by writing equation(4) in matrix form. Thus, 

we have 

HO = [IO] ω , 

where the components of [IO] are the moments and products of inertia about point O given above. 

It follows from the definition of the products of inertia, that the tensors of inertia are always symmetric. The 

implications of equation (5) are that in many situations of importance, even for bodes of some symmetry, the 

angular momentum vector H� and the angular velocity vector �ω are not parallel. This introduces considerable 

complexity into the analysis of the dynamics of rotating bodies in three dimensions. 
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Principal Axes of Inertia 

For a general three-dimensional body, it is always possible to find 3 mutually orthogonal axis (an x, y, z 

coordinate system) for which the products of inertia are zero, and the inertia matrix takes a diagonal form. 

In most problems, this would be the preferred system in which to formulate a problem. For a rotation 

about only one of these axis, the angular momentum vector is parallel to the angular velocity vector. For 

symmetric bodies, it may be obvious which axis are principle axis. However, for an irregular-shaped body 

this coordinate system may be difficult to determine by inspection; we will present a general method to 

determine these axes in the next section. 

But, if the body has symmetries with respect to some of the axis, then some of the products of inertia 

become zero and we can identify the principal axes. For instance, if the body is symmetric with respect to 

the plane x� = 0 then, we will have Ix�y� = Iy�x� = Ix�z� = Iz�x� = 0 and x� will be a principal axis. This can 

be shown by looking at the definition of the products of inertia. 

The integral for, say, Ix� y� can be decomposed into two integrals for the two halves of the body at either side 

of the plane x� = 0. The integrand on one half, x�y�, will be equal in magnitude and opposite in sign to the 

integrand on the other half (because x� will change sign). Therefore, the integrals over the two halves will 

cancel each other and the product of inertia Ix�y� will be zero. (As will the product of inertia Ix�z� ) 

Also, if the body is symmetric with respect to two planes passing through the center of mass which are 

orthogonal to the coordinate axis, then the tensor of inertia is diagonal, with Ix�y� = Ix� z� = Iy�z� = 0. 
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Another case of practical importance is when we consider axisymmetric bodies of revolution. In this case, 

if one of the axis coincides with the axis of symmetry, the tensor of inertia has a simple diagonal form. For 

an axisymmetric body, the moments of inertia about the two axis in the plane will be equal. Therefore, 

the moment about any axis in this plane is equal to one of these. And therefore, any axis in the plane is 

a principal axis. One can extend this to show that if the moment of inertia is equal about two axis in the 

plane (IPP = Ixx), whether or not they are orthogonal, then all axes in the plane are principal axes and the 

moment of inertia is the same about all of them. In its inertial properties, the body behaves like a circular 

cylinder. 

The tensor of inertia will take different forms when expressed in different axes. When the axes are such that 

the tensor of inertia is diagonal, then these axes are called the principal axes of inertia. 

The Search for Principal Axes and Moments of Inertia as an Eigenvalue Problem 

Three orthogonal principal axes of inertia always exist even though in bodies without symmetries their 

directions may not be obvious. To find the principle axis of a general body consider the body shown in the 

figure that rotates about an unknown principal axis. The the total angular momentum vector is I�ω in the 

direction of the principle axis. For rotation about the principal axis, the angular momentum and the angular 

velocity are in the same direction. 
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We seek a coordinate axes x, y and z, about which a rotation ωx, ωy and ωz, which is aligned with this 

coordinate direction, will be parallel to the angular momentum vector and related by the equation ⎞⎛⎞⎛⎞⎛⎞⎛ ⎜⎜⎜⎝ 

HGx 

HGy 

⎟⎟⎟⎠ 
= 

⎜⎜⎜⎝ 

Iωx 

Iωy 

⎟⎟⎟⎠ 
= 

⎜⎜⎜⎝
I 0 0 

0 I 0 
⎜⎜⎜⎝ 

⎟⎟⎟⎠ 

ωx 

ωy 

⎟⎟⎟⎠ 
. (7) 

HGz Iωz 0 0 I ωz


We then express the general form for angular momentum vector in components along the x, y and z axis


in term of the components of �ω along these axes using the general form of the inertia tensor in the x, y, z


system, we have ⎞⎛⎞⎛⎞⎛ ⎜⎜⎜⎝ 

HGx 

HGy 

⎟⎟⎟⎠ 
= 

⎜⎜⎜⎝ 

Ixx −Ixy −Ixz 

−Iyx Iyy −Iyz 

⎜⎜⎜⎝ 

⎟⎟⎟⎠ 

ωx 

ωy 

⎟⎟⎟⎠ 
. (8) 

HGz −Izx −Izy Izz ωz


To obtain the special directions of ω that is aligned with a principal axis, we equate these two expressions.
⎞⎛⎞⎛⎞⎛⎞⎛⎞⎛⎞⎛ 
I 0 

0 I 0 

0⎜⎜⎜⎝ 

HGx 

HGy 

⎟⎟⎟⎠ 
= 

⎜⎜⎜⎝ 

Iωx 

Iωy 

⎟⎟⎟⎠ 
= 

⎜⎜⎜⎝ 

⎜⎜⎜⎝ 

⎟⎟⎟⎠ 

ωx 

ωy 

⎟⎟⎟⎠ 
= 

⎜⎜⎜⎝ 

Ixx −Ixy −Ixz 

−Iyx Iyy −Iyz 

⎜⎜⎜⎝ 

⎟⎟⎟⎠ 

ωx 

ωy 

⎟⎟⎟⎠ 
. (9) 

HGz Iωz 0 0 I ωz −Izx −Izy Izz ωz 

At this point in the process we know the inertia tensor in an arbitrary x, y, and z system and are seeking the 

special orientation of ω which will align the angular momentum HG with the angular velocity ω. Collecting 

terms from equation(11) on the left-hand side, we obtain ⎞⎛⎞⎛⎞⎛ 
(Ixx − I) 0−Ixy −Ixz ⎜⎜⎜⎝ 

⎟⎟⎟⎠ 

ωx 

ωy 

⎟⎟⎟⎠ 
= 

⎜⎜⎜⎝ 

⎜⎜⎜⎝ 

⎟⎟⎟⎠ 
. (10)(Iyy − I) −Iyz 0−Iyx 

−Izx −Izy (Izz − I) ωz 0 

resulting in the requirement that ⎞⎛⎞⎛⎞⎞⎛⎞⎛⎛ 
Ixx −Ixy −Ixz 

−Iyx Iyy −Iyz 

⎟⎟⎟⎠− I 
⎜⎜⎜⎝ 

1 0 0 

0 1 0 
⎜⎜⎜⎝ 

⎟⎟⎟⎠ 

⎟⎟⎟⎠ 

ωx 

ωy 

⎟⎟⎟⎠ 
= 

⎜⎜⎜⎝ 

0⎜⎜⎜⎝ 

⎜⎜⎜⎝ 

⎟⎟⎟⎠ (11)0 

−Izx −Izy Izz 0 0 1 ωz 0 
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The structure of the solution for finding the principal axes of inertia and their magnitudes is a characteristic-

value problem. The three eigenvalues give the directions of the three principal axis, and the three eigen­

vectors give the moments of inertia with respect to each of these axis. 

In principal directions, the inertia tensor has the form ⎞⎛ 

[IG] = 
⎜⎜⎜⎝ 

Ix 0 0 

0 Iy 0 

0 0 Iz 

⎟⎟⎟⎠ 

where we will write Ix = Ixx, Iy = Iyy and Iz = Izz . Also, in principal axes we will then have 

HG = Ixωxi + Iyωyj + Iz ωz k . 

Parallel Axis Theorem 

It will often be easier to obtain the tensor of inertia with respect to axis passing through the center of mass. 

In some problems however, we will need to calculate the tensor of inertia about different axes. The parallel 

axis theorem introduced in lecture L22 for the two dimensional moments of inertia can be extended and 

applied to each of the components of the tensor of inertia. 

In particular we can write, 

(Ixx)O = (y 2 + z 2) dm = ((yG + y�)2 + (zG + z�)2) dm 
m 

= (y�2 + z�2) + 2yG y� dm + 2zG z� dm + (y 2 + z 2 ) dmG G
m m m m 

2 2= Ixx + m(yG + zG) . 

Here, we have use the fact that y� and z� are the coordinates relative to the center of mass and therefore 

their integrals over the body are equal to zero. Similarly, we can write, 

2 2 2 2(Iyy)O = Iyy + m(xG + zG), (Izz )O = Izz + m(xG + yG), 

and, 

(Ixy )O = (Iyx)O = Ixy + mxGyG, (Ixz )O = (Izx)O = Ixz + mxGzG, (Iyz)O = (Izy )O = Iyz + myGzG . 

m 
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Rotation of Axes 

In some situations, we will know the tensor of inertia with respect to some axes xyz and, we will be interested 

in calculating the tensor of inertia with respect to another set of axis x�y�z�. We denote by i, j and k the 

unit vectors along the direction of xyz axes, and by i�, j� and k� the unit vectors along the direction of x�y�z� 

axes. The transformation of the inertia tensor can be accomplished by considering the transformation of the 

angular momentum vector H� and the angular velocity vector ω� . We begin with the expression of H� and ω�

in the x1, x2, x3 system. 

H� = [I]ω� (12) 

We have not indicated by a subscript where the origin of our coordinates are, i.e. the center of mass G, 

a fixed point O, or any other point, because as long as we are simply doing a rotational transformation of 

coordinates about this point, it does not matter, 

From Lecture 3, we have that the transformation of a vector from a coordinate system x1, x2, x3 into a 

coordinate system x�1, x
�
2x

�
3 is given by ⎞⎛⎞⎛⎞⎛⎞⎛ ⎜⎜⎜⎝ 

H1
�

H2
�

⎟⎟⎟⎠ 
= 

⎜⎜⎜⎝ 

i� i1 i� i2 i�1 · 1 · 1 · i3 ⎜⎜⎜⎝ 

⎟⎟⎟⎠ 

H1 

H2 

⎟⎟⎟⎠ = [T ] 
⎜⎜⎜⎝ 

H1 

H2 

⎟⎟⎟⎠ 
.i� i1 i� i2 i�2 · 2 · 2 · i3 

H3
� i�3 · i1 i�3 · i2 i�3 · i3 H3 H3 

where we have introduced the symbol [T] for the transformation matrix. 
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Likewise, the transformation of �ω into the x1
� , x�2, x3

� system is given by ⎞⎛⎞⎛⎞⎛⎞⎛ 
ω1
� i� i1 i� i2 i�1 · 1 · 1 · i3 ω1 ω1⎜⎜⎜⎝ ω2
�

⎟⎟⎟⎠ 
= 

⎜⎜⎜⎝ i� i1 i� i2 i�2 · 2 · 2 · i3 

⎜⎜⎜⎝ 

⎟⎟⎟⎠ ω2 

⎟⎟⎟⎠ = [T ] 
⎜⎜⎜⎝ ω2 

⎟⎟⎟⎠ 
. 

ω3
� i�3 · i1 i�3 · i2 i�3 · i3 ω3 ω3 

To determine H� � (in the transformed system) we multiply both sides of equation (10) by [T ], and obtain 

H� � = [T ]H� = [T ][I]�ω (13) 

where [I] is the inertia matrix in the original coordinate system. But this equation is not quite in the proper 

form; we need to have the form H� � = [I �]�ω� to identify [I �], the inertia matrix in the new coordinate system. 

We take advantage of the fact that the matrix [T ]T is also the inverse of [T ], [T ]−1, so that [T ]T [T ] = [Iden], 

where [Iden] is the identity matrix. Now, we can always stick an identity matrix in a matrix equation–like 

multiplying by 1–so that we may write 

H� � = [T ]H� = [T ][I][T ]T [T ]�ω = [T ][I][T ]T [T ]�ω = [I �]ω� (14) 

were we have grouped the terms so that it is obvious that the inertia tensor in the transformed coordinate 

system is 

[I �] = [T ][I][T ]T (15) 

Therefore, if we want to calculate the tensor of inertia with respect to axis x�y�z�, we can write in matrix 

form ⎞⎛⎞⎛⎞⎛⎞⎛ 
i� i i� j i� i� j i� k i�⎜⎜⎜⎝ 

Ix�x� −Ix�y� −Ix�z� 

−Iy�x� Iy�y� −Iy�z� 

⎟⎟⎟⎠ 
= 

⎜⎜⎜⎝ 

k ⎜⎜⎜⎝ 

⎟⎟⎟⎠ 

Ixx −Ixy −Ixz 

−Iyx Iyy −Iyz 

⎜⎜⎜⎝ 

⎟⎟⎟⎠ 

i· · · · · · 

j� i j� j j�· · j� j i� k j�· ·k i . · · 

−Iz� x� −Iz�y� Iz�z� k� i k� j k� k −Izx −Izy Izz i k� j k� k k�· · · · · · 

where we have returned to the x, y, z notation.


Likewise, expressed in the direction cosines of the figure, the transformation is
 ⎞⎛⎞⎛⎞⎛ 

[I �] = 
⎜⎜⎜⎝ 

cos (θ11) cos (θ12) cos (θ13) 

cos (θ21) cos (θ22) cos (θ23) 
⎜⎜⎜⎝ 

⎟⎟⎟⎠ 

Ixx −Ixy −Ixz 

−Iyx Iyy −Iyz 

⎜⎜⎜⎝ 

⎟⎟⎟⎠ 

cos (Θ11) cos (Θ12) cos (Θ13) 

cos (Θ21) cos (Θ22) cos (Θ23) 
⎟⎟⎟⎠ 
.. 

cos (θ31) cos (θ32) cos (θ33) −Izx −Izy Izz cos (Θ31) cos (Θ32) cos (Θ33) 
(16) 

Inertia Tensor of a Cube 

We are going to consider and calculate the inertia tensor of a cube of equal length sides b. (This example is 

taken from Marion and Thorton.) For this choice of coordinates, it is obvious that the center of mass does 

not lie at the origin. It is also obvious that there is considerable symmetry in the geometry. 
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1
1√
3 

about the x�

upper point of the cube and through the center of mass as well. If we were to do this, we would find that 

indeed this transformation results in coordinate directions which are principal axis directions, and moreover 

that the inertias are equal about any axis in the plane perpendicular to the diagonal of the cube, so that all 

these axes are principal with equal moments of inertia. 

Another more general method is to express the search for principal axes as an eigenvalue problem, as previ­

ously outlined. In a problem without strong and obvious symmetry, identifying an appropriate transformation 

is often a matter of guess work; therefore the eigenvalue formulation is more useful. 

⎞⎛ ⎟⎟⎟⎠
Mb2 

Mb2 

1 

1 
4

Mb2 

4−Mb21 
4

2 −Mb

2 
3

−Mb2 

Mb2

2 

1 

3

4

Mb21 

−Mb21 
4−
4

2 

−
3⎜⎜⎜⎝ (17) 

Evaluating the various integrals for the components of the inertia tensor, we have 

[I] = 

This result is perhaps a bit surprising; because of the strong symmetry of the cube we might have expected 

these coordinates to be principal axes. However, our origin of coordinates is not at the center on mass, and 

by the parallel axis theorem, we incur products of inertia the equal to total mass times the various distances 

of center of mass from the origin of coordinates. 

There are several options to find a set of principal axis for this problem. One is to use the symmetry to 

identify a coordinate system in which the products of inertia vanish. The transformation sketched in the 

figure is a good candidate to obtain the principal axes; that is a rotation of θ = π/4 about the x3 axis, 

followed by a rotation of ψ = sin−1 axis. This would result in the x1 axis going through the 

10 



Products of Inertia in a Plane 

In many situations, we will know one principal axis from symmetry, and will be working with moments of 

inertia and inertia products in a plane. An example would be a flat plate of mass m, thickness t, width a and 

length b. It is clear from the sketch that the principal axis are the x y coordinates. We may have reasons 

for wanting to express the moments of inertia and the products of inertia in the x�, y� system (rotated from 

the x, y system by an angle θ) or to move back and forth between the x, y system, and the x�, y� system. 

The coordinate transformation that takes a vector in the x, y, z system into the x�, y�, z� system is ⎞⎛⎞⎛⎞⎛ 
0⎜⎜⎜⎝ 

x� 

y� 
⎟⎟⎟⎠ 

= 
⎜⎜⎜⎝ 

cosθ sinθ x⎜⎜⎜⎝ 

⎟⎟⎟⎠ 

⎟⎟⎟⎠ 
. (18)0−sinθ cosθ y 

z� 0 0 1 z 

or (�x�) = [T ](�x); while the coordinate transformation that takes a vector in the x�, y�, z� system into the 

x, y, z system is 

⎞⎛⎞⎛⎞⎛ 
0 ⎜⎜⎜⎝ 

⎟⎟⎟⎠ 

x� 

y� 
⎟⎟⎟⎠ 
. (19) 

cosθ −sinθ x⎜⎜⎜⎝ 

⎟⎟⎟⎠ 
= 

⎜⎜⎜⎝ 0sinθ cosθ y 

z 0 0 1 z� 

or (�x) = [T ]T where we have taken advantage of the fact that the matrix for the reverse transformation 

(�x� to �x) is the transpose of the matrix for the forward transformation (�x to �x�). The inertia matrix for a 

rectangular plate with its center of mass at the origin in the x, y, z system, for which the principal axes line 

up with the coordinate directions is 

⎞⎛ 
2b 0 012 

2 
Ix,y,z = M 

⎜⎜⎜⎝ 

⎟⎟⎟⎠ 
. (20)0 0a 

12 

0 0 a 2 +b2 

12 

If we wish to obtain the inertia tensor in the x�, y�, z� system, we apply the transformation 

Ix� ,y� ,z� = [T ][Ix,y,z][T ]T (21) 
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The Symmetry of Three 

An interesting and practical result for inertias in a plane comes from considering the moment of inertia of a 

body with tri-symmetry, such as a three-bladed propeller or a wind turbine. It is clear that the axis normal 

to the figure is a principal axis, with masses symmetrically balanced about the origin. It is also clear that 

both the x and y axis are principal axis, with inertia products going to zero by symmetry. What is perhaps 

surprising, is that Ixx the moment of inertia about the x axis is equal to Iyy the moment of inertia about 

the y axis. 

Consider the x axis; for a point r0 the contribution to the moment of inertia from all 3 mass points is 
2
0m(r0

2 + 2(r0/2)2) = m 3r . Consider the y axis; for a point r0 the contribution to the moment of Ixx = 2 
3rinertia from all 3 mass points is Iyy = m(2(

√
3r0/2)2) = m 

2
0 . Therefore, the total moment of inertia about 2 

2
0both the x and y axis will be an integral of the mass distribution in dm times 3r . Since the moments of 2 

inertia are equal about the 2 principal axis x and y, the moment of inertia about any axis in the x,y plane 

is also equal to Ixx. The three-bladed propeller behaves as a uniform disk. This has important implications 

for the vibrations of propellers of historically-interesting high performance propeller fighter aircraft and wind 

turbines in yawing motion. 

ADDITIONAL READING 

J.L. Meriam and L.G. Kraige, Engineering Mechanics, DYNAMICS, 5th Edition 

7/7, Appendix B 

S. T. Thorton and J. B. Marion, Classical Dynamics of Particles and Systems, 4th Edition, Chapter 11 
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