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Lecture L25 - 3D Rigid Body Kinematics 

In this lecture, we consider the motion of a 3D rigid body. We shall see that in the general three-dimensional 

case, the angular velocity of the body can change in magnitude as well as in direction, and, as a consequence, 

the motion is considerably more complicated than that in two dimensions. 

Rotation About a Fixed Point 

We consider first the simplified situation in which the 3D body moves in such a way that there is always a 

point, O, which is fixed. It is clear that, in this case, the path of any point in the rigid body which is at a 

distance r from O will be on a sphere of radius r that is centered at O. We point out that the fixed point 

O is not necessarily a point in rigid body (the second example in this notes illustrates this point). 

Euler’s theorem states that the general displacement of a rigid body, with one fixed point is a rotation about 

some axis. This means that any two rotations of arbitrary magnitude about different axes can always be 

combined into a single rotation about some axis. 

At first sight, it seems that we should be able to express a rotation as a vector which has a direction along 

the axis of rotation and a magnitude that is equal to the angle of rotation. Unfortunately, if we consider two 

such rotation vectors, θ1 and θ2, not only would the combined rotation θ be different from θ1 + θ2, but in 

general θ1 + θ2 =� θ2 + θ1. This situation is illustrated in the figure below, in which we consider a 3D rigid 

body undergoing two 90o rotations about the x and y axis. 
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It is clear that the result of applying the rotation in x first and then in y is different from the result obtained 

by rotating first in y and then in x. Therefore, it is clear that finite rotations cannot be treated as vectors, 

since they do not satisfy simple vector operations such as the parallelogram vector addition law. 

This result can also be understood by considering the rotation of axes by a coordinate transformation. 

Consider a transformation (x�) = [T1](x), and a subsequent coordinate transformation (x��) = [T2](x�). The 

(x��) coordinate obtained by the transformation (x��) = [T1][T2](x) will not be the same as the coordinates 

obtained by the transformation (x��) = [T2][T1](x), in other words, order matters. 

Angular Velocity About a Fixed Point 

On the other hand, if we consider infinitesimal rotations only, it is not difficult to verify that they do 

indeed behave as vectors. This is illustrated in the figure below, which considers the effect of two combined 

infinitesimal rotations, dθ1 and dθ2, on point A. 

(figure reproduced from J.L. Meriam and K.L. Kraige, Dynamics, 5th edition, Wiley) 

As a result of dθ1, point A has a displacement dθ1 × r, and, as a result of dθ2, point A has a displacement 

dθ2 ×r. The total displacement of point A can then be obtained as dθ ×r, where dθ = dθ1 +dθ2. Therefore, 

it follows that angular velocities ω1 = θ̇1 and ω2 = θ̇2 can be added vectorially to give ω = ω1 + ω2. This 

means that if at any instant the body is rotating about a given axis with angular velocity ω1 and at the 

same time this axis is rotating about another axis with angular velocity ω2, the total angular velocity of 

the body will be simply ω = ω1 + ω2. Therefore, although the finite rotations of a body about an axis are 
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not vectors, the infinitesimal rotations are vectors. The angular velocity is thus a vector and for a complex 

configuration, the various components can ba vectorially added to obtain the total angular velocity. 

Consider the complex rotating configuration shown below. We want to determine the angular velocity of the 

disc D. 

First, we note that the disc is rotating with angular velocity ω1 about the axis MM �. In turn, this axis is 

rotating with angular velocity ω2 about the horizontal axis, which is at this instant aligned with the x axis. 

At the same time, the whole assembly is rotating about the z axis with angular velocity ω3. Therefore, 

the total angular velocity of the disc is vector sum of the individual angular velocity vectors. The resultant 

vector is shown in the figure: ωtotal = ω1 + ω2 + ω3. Expressed in the fixed x, y, z system for which the 

configuration is instantaneously aligned as shown, we have 

ω = ω2 i + ω1 cos φ j + (ω1 sin φ + ω3) k . 

Here, φ is the angle between MM � and the y axis. 

Angular Acceleration 

In order to apply the principle of conservation of angular momentum, we need a general expression for 

the angular acceleration of the various components of a complex rotating configuration. We first examine 

this problem with respect to inertial coordinate system, x, y, z. In order to apply conservation of angular 

˙ dmomentum, we must develop a formula for the time rate of change of angular momentum, BH = dt (IGω) = 

IG
d ω + ω d IG. We will later consider under what conditions we need to consider ω d IG.dt dt dt 

For now, we concentrate on determining d ω. We first consider a common situation in the study of rotating dt 

3D objects, the rotating wheel with angular velocity ω attached to a central hub which rotates with angular 

velocity Ω, shown in the figure. The total angular velocity is the vector sum of Ω and ω. 
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In this example, we take ω constant in magnitude (but not direction) and Ω as constant. It is clear that 

the rotation Ω will rotate the vector ω, changing its direction. The magnitude of ω̇ is Ωω, the direction 

is normal to ω; by Coriolis theorem, the result is ω̇ = Ω × ω. It is interesting to note that this result is 

independent of the distance b between the wheel and the axis of rotation for Ω. This is a consequence of our 

earlier observation that in a rigid body rotating with angular velocity ω, every point rotates with angular 

velocity ω. 

Example Multiple Observers 

In this example we illustrate a more systematic procedure for calculating the angular velocities and accel­

erations when several reference frames are involved. We want to determine the angular acceleration of the 

disc D as a function of the angular velocities and accelerations given in the diagram. The angle of ω1 with 

the horizontal is φ. 
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The angular velocity vector for each component is the vector sum of the individual angular velocities of 

the components:ω3, ω2total = ω3 + ω2 ; ω1total = ω1 + ω2 + ω3. The angular accelerations of the various 

components are worked through individually. Consider ω3. Since it is the ”primary” rotor, the rotation ω2 

and ω1 do not affect its motion. Therefore the angular acceleration is due solely to ω̇3. Consider ω2. This 

angular velocity vector will change with time both due to ω̇2 as well as ω3 × ω2. And finally, for ω̇1: this 

angular velocity vector will change with time both due to ω̇1 as well as (ω3 + ω2) × ω1. 

We now resolve these vectors into appropriate coordinate systems. We consider three sets of axes. Axes 

xyz are fixed. Axes x�y�z� rotate with angular velocity ω3k with respect to xyz. Axes x��y��z�� rotate with 

angular velocity ω2i
� with respect to x�y�z�. Finally, the disc rotates with angular velocity ω1j

�� with respect 

to the axes x��y��z��. 

The angular velocity of the disc with respect to the fixed axes will be simply 

Ω = ω2i
� + ω1j

�� + ω3k . (1) 

At the instant considered, i� = i and j�� = cos φj + sin φk. Therefore, we can also write, 

Ω = ω2i + ω1 cos φj + (ω1 sin φ + ω3)k . 

In order to calculate the angular acceleration of the disc with respect to the fixed axes xyz, we start from 

(1) and write, 

dΩ d d 
= (ω2i

� + ω1j
�� + ω3k) = (ω2i

� + ω1j
��) + ω̇3k . 

dt dt dt xyz xyz xyz 

Here, we have used the fact that k does not change with respect to the xyz axes and therefore only the 

magnitude of ω3 changes. In order to calculate the time derivative of ω2i
� + ω1j

�� with respect to the inertial 

reference frame, we apply Coriolis’ theorem. Since x�y�z� rotates with angular velocity ω3k with respect to 

5 



� � � � 

� � � � 

� � � � 

� � 

xyz, we write, 

d d
(ω2i

� + ω1j
��) = (ω2i

� + ω1j
��) + ω3k × (ω2i

� + ω1j
��) . 

dt dt xyz x�y�z� 

In the x�y�z� frame, i� does not change direction. Therefore, we can write 

d d
(ω2i

� + ω1j
��) = ω̇2i

� + (ω1j
��) + ω3k × (ω2i

� + ω1j
��) . 

dt dt xyz x�y�z� 

In order to evaluate the derivative of ω1j
�� with respect to the x�y�z� frame we make use again of Coriolis’ 

theorem, and write 

d d
(ω1j

��) = (ω1j
��) + ω2i

� × ω1j
�� = ω̇1j

�� + ω2i
� × ω1j

�� . 
dt dt x�y� z� x��y��z�� 

Here, we have used the fact that x��y��z�� rotates with angular velocity ω2i
� with respect to x�y�z�, and the 

derivative of j�� in the x��y��z�� reference frame is zero. Putting it all together, we have, 

dΩ 
= ω̇2i

� + ω̇1j
�� + ω2i

� × ω1j
�� + ω3k × (ω2i

� + ω1j
��) + ω̇3k 

dt xyz 

= ω̇2i
� + ω̇1j

�� + ω1ω2k
�� + ω2ω3j − ω1ω3 cos φ i + ω̇3k


= (ω̇2 − ω1ω3 cos φ) i + (ω̇1 cos φ + ω2ω3 − ω1ω2 sin φ) j + (ω̇3 + ω̇1 sin φ + ω1ω2 cos φ) k.


Instantaneous Axis of Rotation 

In two dimensions, we introduced the concept of instantaneous center of rotation. For a rotating body with 

one fixed point, we can extend this concept to an instantaneous axis of rotation. 

Consider a vertical disc rotating with a constant angular velocity ω, rolling without slip with an angular 

velocity about the vertical axis with angular velocity Ω. The no-slip condition requires that the velocity of 

the center of mass VG = −ωR. The disk rolling around a circle of radius b will have an angular velocity 

Ω = ωR/b. We note that just as in two-dimensions, point O is a fixed point, an instantaneous center of 

rotation. That is, at that instant, the motion of the disc is such that the distance from any point in the disc 

to the point O remains constant. The total instantaneous angular velocity is the vector sum of Ω + ω. The 

resultant vector is sketched and as would be expected, it is parallel to a line from the center of the hub to 

the point C. 

Once the instantaneous angular velocity, ωT = Ω + ω, has been determined, the velocity of any point in the 

rigid body is simply 

v = ωT × r , (2) 

where r is the position vector of the point considered with respect to the fixed point O. It follows that for 

any point which is on the line passing through O and parallel to ωT , the velocity will be zero. This line is 

therefore the Instantaneous Axis of Rotation. 
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We can now define two space curves, which are instantaneously tangent to the instantaneous axis of rotation. 

These curves are useful for more complex problems in the general rotation of a body about a fixed point. 

This simple example gives us a useful visualization of these space curves. The first is called the body cone : 

it is the locus of points made by the instantaneous axis of rotation as the body traces its motion. As can be 

seen, for this case, it is a cone of radius equal to the radius of the disc, extending to the hub at the z axis. 

(The term body cone is a bit of a misnomer; the body doesn’t have to fit entirely inside the body cone.) 

The second space curve is called the space cone. It is defined as the locus of points traced in space by the 

instantaneous axis of rotation. At the instantaneous position of the body, these two curves are both tangent 

to the instantaneous axis of rotation. In this case, the space cone is the cone bounded by the curve traced 

by the instantaneous contact point and the fixed point, the center of the hub. The body curve and the space 

curve for more general three-dimensional motions are shown in the figure. 

For a general motion, as the direction of the instantaneous axis of rotation (or the line passing through O 

parallel to ω) changes in space, the locus of points defined by the axis generates a fixed Space Cone. If the 

change in this axis is viewed with respect to the rotating body, the locus of the axis generates a Body Cone. 
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At any given instant, these two cones are tangent along the instantaneous axis of rotation. When the body


is in motion, the body cone appears to roll either on the inside or the outside of the fixed space cone. This


situation is illustrated in the figure below.


The acceleration of any point in the rigid body is obtained by taking the derivative of expression 2. Thus,


a = ω̇T × r + ωT × ṙ = α × r + ωT × (ωT × r) . (3) 

Here, α is the angular acceleration vector and is locally tangent to both the Space and the Body Cones. 

General Motion 

In the general case, the displacement of a rigid body is determined by a translation plus a rotation about


some axis. This result is a generalization of Euler’s theorem, which is sometimes known as Chasles’ theorem.


In practice, this means that six parameters are needed to define the position of a 3D rigid body. For instance,


we could choose three coordinates to specify the position of the center of mass, two angles to define the axis


of rotation and an additional angle to determine the magnitude of the rotation.


Unlike the motion about a fixed point, it is not always possible to define an instantaneous axis of rotation.


Consider, for instance, a body which is rotating with angular velocity ω and, at the same time, has a


translational velocity parallel to ω. It is clear that, in this case, all the points in the body have a non-zero


velocity, and therefore an instantaneous center of rotation cannot be defined.


It turns out that, in some situations, the motion of the center of mass of a 3D rigid body can be determined


independent of the orientation. Consider, for instance, the motion of an orbiting satellite in free flight. In


this situation, the sum of all external forces on the satellite does not depend on the satellite’s attitude, and,


therefore, it is possible to determine the position without knowing the attitude. In more complex situations,


however, it may be necessary to solve simultaneously for both the position of the center of mass and the


attitude.


The velocity, vP , and acceleration, aP , of a point, P , in the rigid body can be determined if we know the


velocity, vO� , and acceleration, aO� , of a point in the rigid body, O�, as well as the body’s angular velocity,


ω, and acceleration, α.


vP = vO� + ω × r� (4)P 

aP = aO� + ω̇ × r�
P ) . (5)P + ω × (ω × r�

Here, r� is the position vector of the point, P , relative to O�. We point out that the angular velocity and P 

angular acceleration are the same for all the points in the rigid body. 

ADDITIONAL READING 
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J.L. Meriam and L.G. Kraige, Engineering Mechanics, DYNAMICS, 5th Edition 

7/1, 7/2, 7/3, 7/4, 7/5, 7/6 (review) 
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