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Vibration, Instability 

An important class of problems in dynamics concerns the free vibrations of systems. (The concept of free 

vibrations is important; this means that although an outside agent may have participated in causing an initial 

displacement or velocity–or both– of the system, the outside agent plays no further role, and the subsequent 

motion depends only upon the inherent properties of the system. This is in contrast to ”forced” motion 

in which the system is continually driven by an external force.) We shall consider only undamped systems 

for which the total energy is conserved and for which the frequencies of oscillation are real. This forms the 

basis of the approach to more complex studies for forced motion of damped systems. We saw in Lecture 13, 

that the free vibration of a mass-spring system could be described as an oscillatory interchange between the 

kinetic and potential energy, and that we could determine the natural frequency of oscillation by equating 

the maximum value of these two quantities. (The natural frequency is the frequency at which the system 

will oscillate unaffected by outside forces. When we consider the oscillation of a pendulum, the gravitational 

force is considered to be an inherent part of the system.) The general behavior of a mass-spring system can 

be extended to elastic structures and systems experiencing gravitational forces, such as a pendulum. These 

systems can be combined to produce complex results, even for one-degree of freedom systems. 

We begin our discussion with the solution of a simple mass-spring system, recognizing that this is a model 

for more complex systems as well. 
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In the figure, a) depicts the simple mass spring system: a mass M, sliding on a frictionless plane, restrained 

by a spring of spring constant k such that a force F (x) = −kx opposes the displacement x. (In a particular 

problem, the linear dependence of the force on x may be an approximation for small x.) In order to get a 

solution, the initial displacement and initial velocity must be specified. Common formulations are: x(0) = 0, 

and dx (0) = V0 (The mass responds to an initial impulse.); or x(0) = X0 and dx (0) = 0 (The mass is given dt dt 

an initial displacement.). The general formulation is some combination of these initial conditions. From 

Newton’s law, we obtain the governing differential equation 

d2x 
m = −kx (1)

dt2 

with x(0) = X0, and dx (0) = V0.dt 

The solution is of the general form, x(t) = Re(Aeiωt), where, at this point in the analysis, both A and ω are 

unknown. That is, we assume a solution in which both A and ω are unknown, and later when the solution 

is found and boundary conditions are considered, we will end up taking the real part of the expression. 

Depending upon whether A is purely real, purely imaginary, or some combination, we will in general get 

oscillatory behavior involving sin� s and cos�s since eiωt = cos ωt + i sin ωt. For a system without damping, 

ω2 = Real(K) (K being some combination of system parameters.), so that ω = ±
√

K. For undamped 

systems, these two ± values of ω, are redundant; only one need be taken. 

To solve the differential equation, equation(1) is rewritten 

d2x 
m + kx = 0. (2)

dt2 

With the assumed form of solution, this becomes 

−ω2 mx(t) + kx(t) = 0 = x(t) ∗ (−ω2 m + k) (3) 

kSince x = x(t), for a valid solution, we require ω = m . 

This approach works as well for systems b) and c). These two systems are pendulums restrained by torsion 

springs, which for small angles (θ or α) produce a restoring torque proportional to the angular departure 

from equilibrium. Consider system b). Its equilibrium position is θ = 0. The restoring torque from the 

spring is Ts = −κθ. The restoring torque from gravity is Tg = −mgLsinθ which for small angles becomes 

Tg = −mgLθ. Writing Newton’s law in a form appropriate for pendular motion, we obtain 

d2θ 1 
mL = (Tg + Ts) (4)

dt2 L

We assume a form of solution, θ(t) = Ae(iωt), and rewrite the equation as before, moving all terms to the 

left-hand side. � 

−mLω2 + 
1 
L

(mgL + κ) 
� 

θ(t) = 0. (5) 

Therefore for a solution we require � 

ω = 
mgL + κ 

mL2 
(6) 

2 



� 

� � 

� 

Examining this result, we see that the combination of the spring and gravity acts to increase the natural 

frequency of the oscillation. Also if there is no spring, κ = 0, and the result becomes just the frequency of a 

pendulum ω = L
g . 

System c) is perhaps a bit more interesting. In this case, we use the small angle α. We take the equilibrium 

position of the spring to be α = 0 so that the restoring torque due to the spring is again Ts = −κα. But now 

in this case, we are expanding the gravitational potential about the point α = 0. Since this is an unstable 

equilibrium point, this gives the restoring (–it doesn’t restore, it keeps going!–) torque due to gravity as 

Tg = mgLsinα or for small α, Tg = mgLα. 

Writing the governing equation for this case, we obtain 

1 −mLω2 + (−mgL + κ) α(t) = 0. (7)
L 

Therefore for a solution we require � 

ω = 
−mgL + κ 

(8)
mL2 

κ−mgL In this case, there is a critical value of κ for which ω = 0. On either side of this point, we have ω = mL2 , 

which gives ω −→ real for κ > mgL, and ω −→ imag for κ < mgL. Since we have assumed α(t) = eiωt , 

a real ω will produce oscillatory motion; an imaginary ω will produce exponentially diverging, or unstable, 

motions. We say that the pendulum for κ less than the critical value, κ = mgL, is unstable. 

Vibration of Multi-Degree of Freedom Systems 

We begin our treatment of systems with multiple degrees of freedom, by considering a two degree of freedom 

system. This system contains the essential features of multi-degree of freedom systems. Consider the two 

two-mass, two-spring systems shown in the figure. 
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In this case, there are two independent variables, x1(t) and x2(t); their motion is not independent, but is 

coupled by their attachments to the springs k1, k2 and for system b), k3. The sketch shows the forces Fi 

acting on the masses as a result of the extension of the spring; these of are equal and opposite at the ends 

of the springs. We consider both system a) and b). System b) is actually the simpler of the two systems 

because of its inherent symmetry. 

The governing equations can be written as 

for system a) 

d2x1 
m1 = −k1x1 + k2(x2 − x1) (9)

dt2 

m2 
d2x2 = −k2(x2 − x1) (10)
dt2 

for system b) 

d2x1 
m1 = −k1x1 + k2(x2 − x1) (11)

dt2 

m2 
d2x2 = −k2(x2 − x1) − k3x2 (12)
dt2 

In both cases, as before, we assume a solution of the form x1(t) = X1e
iωt and x2(t) = X2e

iωt . However, as 

we will see, in this case, we will obtain two possible values for ω2; both will be real; we will take only the 

positive value of ω itself. These will be the two vibration modes of this two degree of freedom system. These 

results extend to N ω2’s for an N degree of freedom system. Again, we will take only the positive value of 

ω. 

Consider first system b). With the assumed form of solution, and rewriting all terms on the left-hand side, 

we obtain 

−ω2 m1X1 + k1X1 − k2(X2 − X1) = 0 (13) 

−ω2 m2X2 + k2(X2 − X1) + k3X2 = 0 (14) 

This equation can be written in matric form as ⎛⎛ ⎞ ⎛ ⎞⎞ ⎛ ⎞ ⎛ ⎞ ⎝⎝ 
k1 + k2 

−k2 

−k2 

k2 + k3 

⎠ − ⎝ 
m1ω

2 

0 

0 

m2ω
2 

⎠⎠ ⎝ 
X1 

X2 

⎠ = ⎝ 
0 

0 
⎠ . (15) 

or ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎝ 
k1 + k2 − m1ω

2 

−k2 

−k2 

k2 + k3 − m2ω
2 

⎠ ⎝ 
X1 

X2 

⎠ = ⎝ 
0 

0 
⎠ . (16) 

This equation makes a very powerful statement. Since the right-hand side of both equations is zero, a 

condition for a solution is that the determinant of the matrix equals zero. This will give an algebraic 

equation with two solutions for ω: ω1 and ω2. These are the ”natural” frequencies of the two degree of 

freedom system. In the general case, they are not equal; and both x1 and x2 participate in the oscillation 
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at each frequency ωi. Also, as in the single degree of freedom system, the actual values of x1(t) and x2(t) 
dx1are determined by initial conditions; in this case 4 initial conditions are required: x1(0), x2(0), dt (0),and 

dx2 (0). The actual values of X1 and X2 are of less interest than the relationships between them and the dt 

structure of the problem.


If the two masses are equal, a particularly simple form of a more general result follows from equation(16).


We consider this as an introduction to the more general case. The more general case will be considered


shortly.	 ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎝ 
k1/m + k2/m − ω2 −k2/m ⎠ ⎝ 

X1 ⎠ = ⎝ 
0 ⎠ . (17) 

−k2/m k2/m + k3/m − ω2 X2 0 

We determine the two values of ωi (ω1 and ω2) by setting the determinant equal to zero. We then substitute 

each value of ωi in turn into the matrix equation and determine for each ωi the coefficients X1i and X2i; 

only their ratio can be determined. We write the coefficients X1i and X2i as vectors, X�1 = (X11, X21) and 

X�2 = (X12, X22), where the subscript 1 refers to the mode associated with ω1, and 2 refers to the mode 

associate with ω2. 

It is a remarkable property of the solution to the governing equations that these vectors are orthogonal: the 

dot product of X�1 · X�2 = 0 (We will follow with an example to amplify and clarify this.) 

Consider the simplest case of system b) with both masses equal to m and all springs of stiffness k. In this 

case we have ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎝ 
2k/m − ω2 −k/m ⎠ ⎝ 

X1 ⎠ = ⎝ 
0 ⎠ . (18) 

−k/m 2k/m − ω2 X2 0 

Setting the determinant equal to zero gives two solutions for ω: ω1 = k/m and ω2 = 3k/m. The 

components of the x1 and x2 motion are: X�1 = (1, 1) and X�2 = (−1, 1). This simple example gives great 

physical insight to the more general problem. The natural frequency is ωi; the components X� i = (Xi1, Xi2) 

are called ”normal modes”. 

Normal Modes of Multi-Degree of Freedom Systems 

Examining the first ”normal mode”, we see an oscillation in which X�1 = (1, 1) occurs at an oscillation 

frequency ω1 = k/m. Since X�1 = (1, 1), the central spring does not deform, and the two masses oscillate, 

each on a single spring, thus giving a frequency ω = k/m. 

The second ”normal mode” has a frequency ω = 3k/m, with X� 2 = (−1, 1); thus the masses move in 

opposite directions, and the frequency of oscillation is increased. It can be seen by inspection that the vector 

X�1 and X�2 are orthogonal (their dot product is zero.) 

If such a system was at rest, and an initial impulse was given to one of the masses, both modes would be 

excited and a free oscillation would occur with each ”mode” oscillating at ”its” natural frequency. 

The equation for general values of k1, k2 and k3 can be written 
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⎛⎛ ⎞ ⎛ ⎞⎞ ⎛ ⎞ ⎛ ⎞
⎝⎝ 
k1/m + k2/m −k2/m ⎠ − ω2 ⎝ 

1 0 ⎠⎠ ⎝ 
X1 ⎠ = ⎝ 

0 ⎠ . (19)

−k2/m k2/m + k3/m 0 1 X2 0 

Characteristic Value Problem 

This problem is called a characteristic-value or eigenvalue problem. Formulated in matrix notation it can be 

written 

⎛⎛ ⎞ ⎛ ⎞⎞ ⎛ ⎞ ⎛ ⎞ 
A11 A12 1 0 X1 0⎝⎝ ⎠ ⎝ ⎠⎠ ⎝ ⎠ = ⎝ ⎠ . (20) 
A21 A22 

− λ 
0 1 X2 0 

The requirements on the simplest form of the characteristic value problem are that the matrix [A] is symmetric 

(This will always be true for combinations of masses and springs.), and that the characteristic value λ 

multiplies an identity matrix. (An identity matrix has all 1’s on the diagonal and 0’s off the diagonal; this 

will be true if all the masses are equal; if not, a more general form must be used yielding analogous results. 

This more general from will be considered shortly.) 

For the form of the governing equation shown in equation(20), the characteristic value λ = ω2 . The general 

solution to this problem will yield a set of solutions for λ equal to the size of the matrix :(i.e a 4 × 4 matrix 

will result in 4 λ’s). For each λi, a vector X� i will be obtained. For this form of the characteristic value 

problem, the dot product between any two of these vectors is zero. 

(Xi,1, Xi,2).(Xj,1, Xj,2) = 0 (21) 

for i �= j. These are the normal modes of the system, and the ω’s are the natural frequencies. Any


numerical matrix method–such as MATLAB– will yield both the λi’s (called the eigenvalues) and the Xi’s,


called the eigenvectors for a particular matrix [A]. A similar result is obtained for the modes of vibration of


a continuous system such as a beam. The displacement of the various mode of vibration of a uniform beam


are orthogonal.


The general solution for the motion of the masses is then given by an expansion in the normal modes, X� i,
⎛ ⎞ ⎛ ⎞ ⎛ ⎞ 
x1(t) X11 X21⎝ ⎠ = A1e iω1t ⎝ ⎠ + A2e iω2t ⎝ ⎠ , (22) 
x2(t) X12 X22 

where X�1 = (X11, X21) and X�2 = (X12, X22) are the eigenvectors or normal modes from the solution of the 

characteristic-value problem, obtained by hand or numerically, and ωi is the natural frequency of that mode. 

Again, it is a remarkable and extremely useful property that the dot product of X�i and X� j is zero unless 

i = j. Good form would suggest that we normalize each Xi so that the magnitude of Xi · Xi equals 1, but 

we usually don’t and therefore need to define Ci = X�i · X�i, the vector-magnitude-squared, for later use. 
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Expansion in Normal Modes; Satisfaction of Initial Conditions 

The general form of solution is given by equation (22). All that remains is to determine the coefficients A1 

and A2. This is done by satisfying the initial conditions on displacement and velocity. In the general case, 

since eiωt = 1 at t = 0, the initial displacement can be written ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ 
x1(0) X11 X21⎝ ⎠ = A1 ⎝ ⎠ + A2 ⎝ ⎠ . (23) 
x2(0) X12 X22 

and for an initial velocity, since iωeiωt = iω at t = 0, the initial velocity can be written ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ 
v1(0) X11 X21⎝ ⎠ = iωA1 ⎝ ⎠ + iωA2 ⎝ ⎠ . (24) 
v2(0) X12 X22 

It should be noted that in general A is complex; the real part relates to the initial displacement; the imaginary 

part to the initial velocity. If we consider Ai to be real, we are automatically assuming no initial velocity. 

Case 1: initial displacement non-zero; initial velocity zero 

We first consider the case of an initial condition on the displacement, specifically x1(0) = x10 and x2(0) = x20, 

with v1(0) = 0 and v2(0) = 0. We define the initial-condition vector as X�0 = (x1(0), x2(0)). To complete 

the solution, we need to obtain the values of A1 and A2 from equation(23). This is done by taking the dot 

product of both sides of equation(23) with the first mode X�1. Finally we get our payoff for all our hard work. 

Since the dot product of X�1 with X�2 is zero; the dot product of X�1 with X�1 is C1; and the dot product of 

X�0 with X�1 is some G1, we obtain 

A1 = X�0 · X�1/C1 = 
G1 (25)
C1 

and taking the dot product of X�0 with X�2 (which equals some G2), we obtain 

A2 = X�0 · X�2/C2 = 
G2 (26)
C2 

With A1 and A2 determined, we have a complete solution to the problem. 

Case 2: initial displacement zero; initial velocity non-zero 

We now consider the case of an initial condition on the velocity, specifically ẋ1(0) = v10 and ẋ2(0) = v20, with 

x1(0) = 0 and x2(0) = 0. We define the initial-condition vector as V�0 = (v10, v20). We use the coefficient Bi 

to define the solution for this case. The solution is again written as an expansion in normal modes oscillating 

at their natural frequency ωi of amplitude Bi, which is unknown at this point. ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ 
x1(t) X11 X21⎝ ⎠ = B1e iωt ⎝ ⎠ + B2e iωt ⎝ ⎠ . (27) 
x2(t) X12 X22 
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As previously noted, B is complex; the real part relates to the initial displacement; the imaginary part to 

the initial velocity. If Bi is imaginary, there is no initial displacement. The velocity at t = 0 is given by ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ 
v1(0) X11 X21⎝ ⎠ = iωB1 ⎝ ⎠ + iωB2 ⎝ ⎠ . (28) 
v2(0) X12 X22 

To complete the solution, we need to obtain the values of B1 and B2 from equation(28). This is again done 

by taking the dot product of equation(28) with the first mode X�1. Since the dot product of X�1 with X�2 is 

zero, and the dot product of X�1 with X�1 is C1, we obtain 

B1 = − 
C

Q

1

1

ω

i 
(29) 

where Q1 = V�0 · X�1 and taking the dot product of X�0 with X�2 we obtain 

Q2i 
B2 = − 

C2ω 
(30) 

where Q2 = V�0 · X�2 and X�2 · X�2C2=. The fact that Bi is purely imaginary confirms our earlier observation 

that real coefficients imply a non-zero initial displacement while purely imaginary coefficients imply a non­

zero initial velocity. A purely imaginary Bi simply implies that the displacement has a sin(ωt) behavior in 

contrast to a cos(ωt) behavior, since the real part of eiωt = cos(ωt), while the real part of −ieiωt = sin(ωt). 

A solution for general initial conditions on x1(0), x2(0), x1(0) and˙ x2(0) would be a linear combination of˙ 

these solutions. 

Solution for Unequal Masses 

If the masses, mi, are not equal we must use a more general form of the eigenvalue problem. Returning to 

Equation (19) for equal masses. 

For the case of equal masses, from Equation (19), this can be written ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎝ 
k1/m + k2/m −k2/m ⎠ ⎝ 

X1 ⎠ = ω2 ⎝ 
1 0 ⎠ (31)


−k2/m k2/m + k3/m X2 0 1 

For unequal masses, we rewrite the equation as ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎝ 
k1 + k2 −k2 ⎠ ⎝ 

X1 ⎠ = ω2 ⎝ 
m1 0 ⎠ ⎝ 

X1 ⎠ (32) 
−k2 k2 + k3 X2 0 m2 X2 

This equation is in the form of the generalized characteristic or eigenvalue problem. (See Hildebrand; 

Methods of Applied Mathematics.) ⎛⎛ ⎞ ⎛ ⎞⎞ ⎛ ⎞ ⎛ ⎞ 
a11 a12 b1 0 X1 0⎝⎝ ⎠ − λ ⎝ ⎠⎠ ⎝ ⎠ = ⎝ ⎠ . (33) 
a21 a22 0 b2 X2 0 
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where equation (20) has been rewritten as (33) in the extended formulation ([A] − λ[B])(X) = 0. Following 

Hildebrand we note that both [A] and [B] are symmetric matrices. Moreover, [B] is a diagonal matrix. Fol­

lowing the solution of the generalized characteristic or eigenvalue problem, by numerical or other technique, 

the resulting orthogonality condition between the ”normal” modes is modified as ⎛ ⎞ ⎛ ⎞ 

(Xi,1, Xi,2) ⎝ 
m1 

0 

0 

m2 

⎠ ⎝ 
Xj,1 

Xj,2 

⎠ = 0 (34) 

for i =� j. Thus the vectors of displacement for the normal modes of vibration must be multiplied by the 

mass distribution to result in orthogonality. A similar result is obtained for the vibration of a continuous 

system, such as a beam with non-uniform mass distribution. The process of expanding the solution in term 

of normal modes goes through as before with the modification of the normality condition. 

In more general configurations, ([A] − λ[B])(X) = 0, the matrix [B] may not be diagonal, that is ⎛ ⎞ 

[B] = ⎝ 
b11 b12 ⎠ (35) 
b21 b22 

As long as [B] is symmetric, the orthogonalization goes through as ⎛ ⎞ ⎛ ⎞ 

(Xi,1, Xi,2) ⎝ 
b11 b12 ⎠ ⎝ 

Xj,1 ⎠ = 0 (36) 
b21 b22 Xj,2 

Observations 

The process we have outlined for finding the solution to the initial value problem to a multi-degree of 

freedom system, outlined from equation(20) on, works for system with degrees of freedom from 2 to 20,000 

and beyond. This approach is of fundamental importance in analyzing vibrations in a wide variety of systems. 

The expansion in normal modes is also useful in more complex problems such as forced motions at frequencies 

other than ωi. 
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