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Lecture L15 - Central Force Motion: Kepler’s Laws 

When the only force acting on a particle is always directed to­

wards a fixed point, the motion is called central force motion. 

This type of motion is particularly relevant when studying the 

orbital movement of planets and satellites. The laws which gov­

ern this motion were first postulated by Kepler and deduced from 

observation. In this lecture, we will see that these laws are a con­

sequence of Newton’s second law. An understanding of central 

force motion is necessary for the design of satellites and space 

vehicles. 

Kepler’s Problem 

We consider the motion of a particle of mass m, in an inertial reference frame, under the influence of a force, 

F , directed towards the origin. 

We will be particularly interested in the case when the force is inversely proportional to the square of the 

distance between the particle and the origin, such as the gravitational force. In this case, 

µ
F = − 

r2 
mer, 

where µ is the gravitational parameter, r is the modulus of the position vector, r, and er = r/r.


It can be shown that, in general, Kepler’s problem is equivalent to the two-body problem, in which two


masses, M and m, move solely due to the influence of their mutual gravitational attraction. This equivalence


is obvious when M � m, since, in this case, the center of mass of the system can be taken to be at M .
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However, even in the more general case when the two masses are of similar size, we shall show that the 

problem can be reduced to a ”Kepler” problem. 

Although most problems in celestial mechanics involve more than two bodies, many problems of practical 

interest can be accurately solved by just looking at two bodies at a time. When more than two bodies are 

involved, the problem is considerably more complicated, and, in this case, no general solutions are known. 

The two body problem was studied by Kepler (1571-1630) who lived before Newton was born. His interest 

was in describing the motion of planets around the sun. He postulated the following laws: 

1.- The orbits of the planets are ellipses with the Sun at one focus 

2.- The line joining a planet to the Sun sweeps out equal areas in equal intervals of time 

3.- The square of the period of a planet is proportional to the cube of the major axis of its elliptical orbit 

In this lecture, we will start from Newton’s laws and verify that the above three laws can indeed be derived 

from Newtonian mechanics. 

Equivalence between the two-body problem and Kepler’s problem 

Here we consider the problem of two isolated bodies of masses M and m which interact though gravitational 

attraction. Let rM and rm denote the position vectors of the two bodies relative to a fixed origin O. Since 

the only force acting on the bodies is the force of mutual gravitational attraction, the motion is governed by 

Newton’s law with an equal and opposite force acting on each body. 

Mm 
M r̈M = G

r2 
er, (1) 

Mm 
mr̈m = −G

r2 
er , (2) 

where r = |r|, er = r/r, and G is the gravitational constant. 

The position of the center of gravity, G, of the two bodies will be 

rG = 
MrM + mrm 

. (3)
M + m 
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Since the two bodies are isolated, we will have, from momentum conservation, that ṙG =constant, and 

r̈G = 0. Therefore, the position of the center of gravity, at all times, can be found trivially from the initial 

conditions. 

If the position vector of m as observed by M , r = rm − rM , is known, then the position vectors of M and 

m could be computed as 
m M 

rM = rG − r, rm = rG + r . (4)
M + m M + m 

Therefore, since we know the position of the center of mass rG for all time, we shall show that the problem 

of determining rM and rm is equivalent to that of determining r, the vector distance between them. 

The governing equations for rm and rM are given in equation (1) and (2). Subtracting these two expressions, 

we obtain, 
M + m 

r̈ = r̈m − r̈M = −G er , (5) 
r2 

or, 

Mm Mm 
r̈ = −G er . (6)

M + m r2 

The above expression shows that the motion of m relative to M is in fact a Kepler problem in which the 

force is given by −GMmer/r
2 (this is indeed the real force), but the mass of the orbiting body (m in this 

case), has been replaced by the reduced mass, Mm/(M + m). Note that when M >> m, the reduced mass 

becomes m. However, the above expression is general and applies to general masses M and m. 

Alternatively, the above expression can be written as 

mr̈ = −G 
(M + m)m 

er , (7) 
r2 

which is again a Kepler problem for an orbiting body of mass m, in which the gravitational parameter µ is 

given by µ = G(M + m). 

Example Solution to the Two Body Problem 

There are two approaches to the solution of the two-body problem. One is a direct numerical attack on 

equations (1) and (2); the other is to use the analytic solution of the Kepler problem, equation(7), and 

having found r(t), to use the equation for the position of the center of mass, rG(t) and equation (4) to 

determine rm(t) and rM (t). The position of the center of mass is determined by the initial conditions 

(position and velocity) of the bodies. Consider the motion of two bodies as shown in a). The masses of the 

two bodies are M = 4 and m = 1; for convenience G was set equal to 10. The initial conditions (vector 

components) are given as rm = (1, 0), ṙm = (2, 3) and rM = (−2, 0) and ṙM = (−2, 0). The motion of the 

two bodies with time is shown in a). From the boundary conditions, we obtain the position of the center of 

mass with time as rG = (−7/5, 0) + (−6/5, 3/5)t; this position with time is shown in b). The bodies ”orbit” 

about the instantaneous position of the center of mass. 
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The solution to the ”Kepler” problem for these bodies is shown in c); the solution to the ”Kepler” orbital 

problem gives the instantaneous position of the relative position of the two bodies, r(t) = rm − rm. The 

Kepler problem has its origin as the center of mass, which also is the focus of the elliptical orbit. To recover 

the orbits of the two bodies, we use equation (4). The two orbits are shown in d). These are also the 

solutions that would be obtained by a direct numerical solution of the two-body problem with boundary 

conditions chosen to place the center of mass at the origin. The origin serves as the focus for each elliptical 

orbit. This example shows the importance of formulating the velocity and position boundary conditions so 

that the center of mass remains fixed at the origin. If this is done, the bodies will orbit about the center of 

mass, producing the simplest solution to the two-body problem. 

Equations of Motion 

The equation of motion (F = ma), is 

µm− 
r2 

er = mr̈. 

Since the only force in the system is directed towards point O, the angular momentum of m with respect 

to the origin will be constant. Therefore, the position and velocity vectors, r and ṙ, will be in a plane 
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� � � � 

� � � � 

orthogonal to the angular momentum vector, and, as a consequence, the motion will be planar. Using 

cylindrical coordinates, with ez being parallel to the angular momentum vector, we have, 

− 
r

µ 
2 
er = (r̈ − rθ̇2)er + (rθ ̈+ 2ṙθ̇)eθ. 

Now, we consider the radial and circumferential components of this equation separately. 

Circumferential component 

We have, 

¨ ˙0 = rθ + 2ṙθ . 

Using the following identity, � �
1 d 

(r 2θ̇) = rθ ̈+ 2ṙθ, ˙
r dt 

the above equation implies that 

r 2θ̇ = h ≡ constant. (8) 

We note that the constant of integration, h, that will be determined by the initial conditions, is precisely 

the magnitude of the specific angular momentum vector, i.e. h = |r × v|. 

In a time dt, the area, dA, swept by r will be dA = r rdθ/2. 

Therefore, 
dA 1 h 

= r 2θ̇ = 
dt 2 2 

, 

which proves Kepler’s second law:The line joining a planet to the Sun sweeps out equal areas in equal 

intervals of time. 

Radial component 

The radial component of the equation of motion reads, 

− 
r

µ 
2 

= r̈ − rθ̇2 . (9) 

2 d 1 2Since −r
� � 

= r, ˙ and r = h/θ̇ from equation 8, we can write dt r 

h d 1 d 1 
ṙ = − 

θ̇ dt r 
= −h

dθ r
. 

Differentiating with respect to time, 

r̈ = −h d
2 1 

θ̇ = − 
h2 d2 1 

. 
dθ2 r r2 dθ2 r 
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Inserting this expression into equation 9, and using equation 8, we obtain the following differential equation 

for 1/r as a function of θ. � � 
d2 1 1 µ

+ = . 
dθ2 r r h2 

This is a linear second order ordinary differential equation which has a general solution of the form, 

1 µ
= (1 + e cos(θ + ψ)) , 

r h2 

where e and ψ are two constants of integration. If we choose θ to be zero when r is minimum, then e will be 

positive, and ψ = 0. The equation describing the trajectory will be 

h2/µ 
r = . (10)

1 + e cos θ 

We shall see below that this is the equation of a conic section in polar coordinates. 

Conic Sections 

Conic sections are planar curves that are defined as follows: given a line, or directrix, and a point, or focus 

O, a conic section is the locus of points, P , such that the ratio of the distance between the point and the 

focus, PO, to the distance between the point and the directrix, PA, is a constant e. That is, e = PO/PA. 

Since PO = r and PA = p/e − r cos θ, we have 

r = 
p

. (11)
1 + e cos θ 

Here, p is the parameter of the conic and is equal to r when θ = ±90o . The constant e ≥ 0 is called 

the eccentricity, and, depending on its value, the conic surface will be either an open or closed curve. In 

particular, we have that when 

e = 0 the curve is a circle 

e < 1 the curve is an ellipse 

e = 1 the curve is a parabola 

e > 1 the curve is a hyperbola. 
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Comparing equation(11) which deals solely with the property of a conic section, and equation(10) which 

provides the solution of the motion of a point mass in a gravitational field, we can identify the properties 

of the conic section orbits in terms of the physical parameters of the Kepler problem. In particular, we see 

that the trajectory of a mass under the influence of a central force will be a conic curve with parameter 

p = h2/µ. (12) 

When e < 1, the trajectory is an ellipse, thus proving Kepler’s first law:The orbits of the planets are 

ellipses with the Sun at one focus. The point in the trajectory which is closest to the focus is called the 

periapsis and is denoted by π. For elliptical orbits, the point in the trajectory which is farthest away from 

the focus is called the apoapsis and is denoted by α. When considering orbits around the earth, these points 

are called the perigee and apogee, whereas for orbits around the sun, these points are called the perihelion 

and aphelion, respectively. 

Elliptical Trajectories 

If a is the semi-major axis of the ellipse, then 

2a = rπ + rα. (13) 

Using equation 11 to evaluate rπ (θ = 0) and rα (θ = π), we obtain 

a = p/(1 − e 2). (14) 

Thus from the geometric properties of an ellipse, 

rπ = 
1 + 
p

e 
= a(1 − e), rα = 1 − 

p

e 
= a(1 + e). 

Also, the distance between O and the center of the ellipse will be 

a − rπ = a e. (15) 
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Other geometric properties of the ellipse are that the distance between point D and the directrix will be


equal to DO/e, which in turn will be equal to the sum of the distance between the focus and the center of


the ellipse, plus the distance between the focus and the directrix. That is, DO/e = ae + p/e. Therefore,


DO = a e2 + p = a. Hence, using Pythagoras’ theorem, b2 + (a e)2 = a2, the semi-minor axis of the ellipse


will be b = a
√

1 − e2.


The area of the ellipse is given by


A = πab. (16) 

Also, since 

dA/dt = h/2 (17) 

is a constant, we have 

A = hτ/2, (18) 

where τ is the period of the orbit. Equating these two expressions and expressing h in terms of the semi-major 

axis as 

h2 = µp = µa(1 − e 2), (19) 

we have � �22π 3 µ = a , (20)
τ 

which proves Kepler’s third law:The square of the period of a planet is proportional to the cube of the 

major axis of its elliptical orbit. This can be rewritten to obtain the time of flight or period of the orbit. 

τ = √
2π
µ
a 3/2 (21) 

Time of Flight (TOF) in Elliptical Trajectories 

We have found r(θ), the prediction of the shape of the orbit. However, this solution gives us no direct 

information about the time behavior of the motions, such as θ(t). In many situations we will need to 

determine the time of flight between two arbitrary points along the ellipse. In order to do that, we use 

Kepler’s second law, which states that the motion of the planet sweeps out area at a constant rate. 

Consider the orbital motion from point 0, to point 1. We would like to determine the time taken t1. If the 

motion continues, returning to point 2, the total time taken will be τ . We define the time to reach point 1 

as T1 and the time to reach point 2 as t2. The total time taken is the t1 + t2 = τ , where τ is the total period 

of the orbit. 
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From Kepler’s second law, equal areas are swept out in equal times. Thus the time taken to reach point 1 

is given by 

t1/A1 = t2/A2 = τ/πab (22) 

where πab is the total area of the ellipse, πab = A1 + A2.


We now construct a more detailed analysis to determine the area Ap swept out by the orbit to a point P.


Referring to the figure, we see that the time required to travel between the point π, the periapsis, and an


arbitrary point P is proportional to the curved area denoted by AP (AP is the sector defined by O, π, P ).


More specifically, since the total period of the orbit is τ and the total area of an ellipse is πab, tP , the time


required to travel from π to P , equals the fraction that the area AP represents of the total area of the ellipse.


tP = 
AP 

τ. (23)
πab 

To find the area AP we construct a circle of radius a with origin at the center of the ellipse. We identify a 

point P � on the circle to be in a vertical line with the point of interest P on the ellipse intersecting the point 

O” on the axis. 

The various geometric quantities of the elliptical orbit have standard definitions: the position angle θ is often 

called the true anomaly. The radial line of the circle for the origin O� to P � and the major axis of the ellipse 
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major axis define an angle u, which is referred to as the eccentric anomaly. In addition, we define a third 

anomaly, the mean anomaly M of the point P , as 

2πtP
MP = . (24)

τ 

Here, tP is the time of flight from the periapsis to the point P . 

Thus, if we want to determine the time of flight between two points 1 and 2 on the ellipse, we can use 

equation (24) and write 

TOF = 
τ 

(M2 − M1) = 
A2 − A1 

τ , = t2 − t1 2π πab 

where A2 − A1 is the area swept out between points 1 and 2. 

The mean anomaly for point P can also be written as 

2π ∗ AP
MP = , (25)

AT 

where AP is the area swept out up to the point P . When the area swept out equals the total area of the 

ellipse AT , the time t equals the period τ and the mean anomaly Mπ = 2 ∗ π. (The subscript π denotes 

the return to the periapsis π.) Thus the mean anomaly can be thought of as the fraction of the total angle 

2π that would be swept out in a time τ by an object reaching point P . The focus is on time not on actual 

spatial angle. 

All is needed now is an expression for the mean anomaly M as a function of the orbit parameters. We start 

by obtaining a relation between θ and u. From simple trigonometry, we have that 

a cos u − r cos θ = ae (26) 

or noting that r = a(1 − e2)/(1 + e cos θ), 

cos u = 
e + cos θ

, cos θ = 
cos u − e

. (27)
1 + e cos θ 

→ 
1 − e cos u 

We now develop relationships between the various areas indicated on the figure, with the goal to find the 

formula for the area AP , the area swept out by the point r as it travels from the periapsis π to the point P . 

The area A1 is the wedge in the circle occupied by the angle u. A1 = a2u; the area of the large triangle 

formed by the angle u within the circle is A2 = a2cos(u)sin(u)/2. Therefore, the area of the large curved 

segment from O”, P �, π is 

A1 − A2 = (1/2) × a 2 × (u − Cos(u)Sin(u)). (28) 

The base of the small triangle of area A4, O,O��, P , is r × cos(θ) = a × cos(u) − ae by equation (26). The 

height of the small triangle is b × sin(u). Therefore, the area of the small triangle is A4 = (1/2) × (a ∗ 

cos(u) − e) × b × sin(u). This area plus the curved segment O”, P, π is the total area swept by the point P . 

The final step in identifying the area segment swept out between point π and P is to identify the curved 

segment from O”, P, π, which is then added to the triangle section A4 to form the complete swept area. 

The curved vertical segment formed from removing the large imbedded triangle A2 from the arc segment of 
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the circle A1 –call it A3 – is geometrically similar to the curved segment formed by removing the small 

triangle from the area of the swept segment of the ellipse. Since the vertical height of the ellipse is b, and 

the vertical height of the circle is a, the area of the desired curved segment can by obtained from that of the 

corresponding segment of the circle by multiplying by b/a. Specifically, 

AP − A4 = (b/a) × (A1 − A2). (29) 

Therefore, the final result for the area swept out by the point r moving from point π to point P is 

AP = b/a × (A1 − A2) + A4 (30) 

And the mean anomaly for the point P is 

MP =
2π ∗ AP =

2π × (b/a × (A1 − A2)) + A4 (31)
AT AT 

Thus, combining equations (24), (28) and (30), we obtain the mean anomaly for the point P , called Kepler’s 

equation (It took a Kepler to work this out.) 

u − e sin u = MP =
2πtP 

. 
τ 

where u is the eccentric anomaly for the point P , defined in the figure. This equation is very easy to use if 

we want to know the time tP at which the satellite is at position θ. The only thing required, in this case, 

is the calculation of the eccentric anomaly u using equation (27). On the other hand, if we need to find 

the position θ of the satellite at a given time t, then, we need to solve Kepler’s equation which is non-linear 

using an iterative numerical algorithm such as Newton’s method. 

ADDITIONAL READING 

J.L. Meriam and L.G. Kraige, Engineering Mechanics, DYNAMICS, 5th Edition 

3/13 (except energy analysis) 
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