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Lecture L12 - Work and Energy 

So far we have used Newton’s second law F = ma to establish the instantaneous relation between 

the sum of the forces acting on a particle and the acceleration of that particle. Once the acceleration 

is known, the velocity (or position) is obtained by integrating the expression of the acceleration 

(or velocity). Newton’s law and the conservation of momentum give us a vector description of the 

motion of a particle in three dimensions 

There are two situations in which the cumulative effects of unbalanced forces acting on a particle 

are of interest to us. These involve: 

a) forces acting along the trajectory. In this case, integration of the forces with respect to the 

displacement leads to the principle of work and energy. 

b) forces acting over a time interval. In this case, integration of the forces with respect to the 

time leads to the principle of impulse and momentum as discussed in Lecture 9. 

It turns out that in many situations, these integrations can be carried beforehand to produce 

equations that relate the velocities at the initial and final integration points. In this way, the 

velocity can be obtained directly, thus making it unnecessary to solve for the acceleration. We shall 

see that these integrated forms of the equations of motion are very useful in the practical solution 

of dynamics problems. 

Mechanical Work 

Consider a force F acting on a particle that moves along a path. Let r be the position of the 

particle measured relative to the origin O. The work done by the force F when the particle moves 

an infinitesimal amount dr is defined as 

dW = F dr . (1)· 
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That is, the work done by the force F , over an infinitesimal displacement dr, is the scalar product 

of F and dr. It follows that the work is a scalar quantity. Using the definition of the scalar product, 

we have that dW = F dr = Fds cos α, where ds is the modulus of dr, and α is the angle between · 

F and dr. Since dr is parallel to the tangent vector to the path, et, (i.e. dr = ds et), we have that 

F et = Ft. Thus, · 

dW = Ft ds , (2) 

which implies that only the tangential component of the force “does” work. 

During a finite increment in which the particle moves from position r1 to position r2, the total 

work done by F is � � r2 s2 

W12 = F dr = Ft ds . (3)· 
r1 s1 

Here, s1 and s2 are the path coordinates corresponding to r1 and r2. 

Note Units of Work


In the international system, SI, the unit of work is the Joule (J). We have that 1 J = 1 N m. In · 

the English system the unit of work is the ft-lb. We note that the units of work and moment are 

the same. It is customary to use ft-lb for work and lb-ft for moments to avoid confusion. 

Principle of Work and Energy 

We now a consider a particle moving along its path from point r1 to point r2. The path coordinates 

at points 1 and 2 are s1 and s2, and the corresponding velocity magnitudes v1 and v2. 
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If we start from (3) and use Newton’s second law (F = ma) to express Ft = mat, we have 

s2 s2 v2 dv ds v2 1 1 
W12 = Ft ds = mat ds = m 

ds dt 
ds = mv dv =

2
mv2

2 − 
2
mv1

2 . (4) 
s1 s1 v1 v1 

Here, we have used the relationship at ds = v dv, which can be easily derived from at = v̇ and v = ṡ

(see lecture D4). 

Defining the kinetic energy1, as 
1 2T = mv ,
2

we have that, 

W12 = T2 − T1 or T1 + W12 = T2 . (5) 

The above relationship is known as the principle of work and energy, and states that the mechanical 

work done on a particle is equal to the change in the kinetic energy of the particle. 

External Forces 

Since the body is rigid and the internal forces act in equal and opposite directions, only the external 

forces applied to the rigid body are capable of doing any work. Thus, the total work done on the 

body will be 
n n� �� (ri)2 

(Wi)1−2 = F i · dr , 
i=1 i=1 (ri)1 

where F i is the sum of all the external forces acting on particle i. 

Work done by couples 

If the sum of the external forces acting on the rigid body is zero, it is still possible to have non-zero 

work. Consider, for instance, a moment M = Fa acting on a rigid body. If the body undergoes 

a pure translation, it is clear that all the points in the body experience the same displacement, 
1The use of T to denote the kinetic energy, instead of K, is customary in dynamics textbooks 
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and, hence, the total work done by a couple is zero. On the other hand, if the body experiences a 

rotation dθ, then the work done by the couple is 

a a 
dW = F dθ + F dθ = F adθ = Mdθ . 

2 2 

If M is constant, the work is simply W1−2 = M(θ2 − θ1). In other words, the couples do work 

which results in the kinetic energy of rotation. 

External and Internal Forces 

In a typical dynamical system, the force F is composed of two terms: an external force F E and an 

internal force F I . The external force results from an external actor applying an arbitrary force–of 

his choice– to the system. The external force does work and changes the energy of the system at 

the whim of the actor. When the external force is removed, the system may oscillate or otherwise 

move subject to internal forces. Internal forces are of two types: conservative internal forces such 

as gravity which conserve energy but for example can transform kinetic into potential energy and 

vice versa; and friction which acts internally to dissipate energy from the system. Initial conditions 

are often set by applied external forces to the system, such as doing work by moving a pendulum 

through an initial angle θ0. When they are removed, the system oscillates perhaps conserving 

energy if friction is absent. We will consider conservative forces shortly. 

Example Block on an incline


Consider a block resting on an incline at position 1 in the presence of gravity. The gravitational 

force acting in the vertical direction is mg. The block is supported on the plane by a normal 

force FN = mgsinα. We desire to push the block up to position 2. To do this, we must apply 

an external force to overcome the component of gravity (internal force) along the plane plus the 
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friction force (internal force) acting to oppose the motion. In this process, the normal force does 

no work. 

The total tangential force acting on the block is then 

FT = FE + FI (6) 

with 

FE = −mgsinα − µmgcosα (7) 

FI = +mgsinα + µmgcosα (8) 

for a total force, internal plus external, of zero. Under these assumptions, the block arrives at 

position 2 with zero velocity. Therefore, by equation (5), no work is done. At first, this does not 

agree with our intuition. We certainly felt we did work in pushing the block up the plane. But 

the work done by the friction force and gravitational force exactly canceled this work. We also feel 

that having raised the block to a higher position, there is some inherent ”gain” in energy which 

could be collected in the future. This is true! This result –that the total force is zero resulting in 

”no work” and no kinetic energy being gained–is due to the external application of force. These 

external forces exactly canceled the internal forces of gravity and friction, driving the total force 

to zero and resulting in no total work In other words, we became an actor instead of an observer. 

These issues will be considered further when we consider conservative forces and potentials 
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Example Block sliding down an incline


Having applied an external force FE to move the block to a higher position on the ramps where it 

rests with no kinetic energy, we now become an observer and release it with only the internal forces 

of gravity and friction acting. The coefficient of kinetic friction between the surface of the ramp 

and the block is µ. We want to determine the velocity of the block as a function of the distance 

traveled on the ramp, s. 

The forces on the block are: the weight, mg, the normal force, N , and, the friction force, µN . We 

have that Fn = man and Ft = mat. Since Fn = N − mg cos α and an = 0, we have N = mg cos α. 

Thus, Ft = mg sin α − µN = mg sin α − µmg cos α, which is constant. If we apply the principle of 

work and energy between the position (1), when the block is at rest at the top of the ramp, and 

the position (2), when the block has traveled a distance s, we have T1 = 0, T2 = (mv2)/2, and the 

work done by Ft is simply W12 = Fts. Thus, 

T1 + W12 = T2 , or, mg(sin α − µ cos α)s = 
2
1 
mv 2 . 

From which we obtain, for the velocity, 

v = 2g(sin α − µ cos α)s . 

We make two observations: first, the normal force, N , does no work since it is, at all times, 

perpendicular to the path, and second, we have obtained the velocity of the block directly without 

having to carry out any integrations. Note that an alternative, longer approach would have been 

to directly use F = ma, and integrate the corresponding expression for the acceleration. 
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Rolling Cylinder, Friction Forces, Work 

The cylinder rolling on a flat plane is a very basic configuration in dynamics. As noted in Lecture 

2, it is a single degree of freedom system with a definite relationship between the position of the 

center of the cylinder, x0(t) and the rotation angle θ(t): θ(t) = −x0(t)/R. The kinematics of the 

rolling cylinder are shown in a). Consider a mass point at the edge of the cylinder. The dashed 

curve shows the path taken by this mass point. Of significance is the behavior near the plane. The 

point O is an instantaneous center of rotation; the tangential velocity of the cylinder is zero about 

this point. The acceleration of the mass point is not zero, nor is its vertical velocity. 

The dynamics of the rolling cylinder is shown in b). If the cylinder moves with constant veloc­

ity, nothing more need be said. However, if ẍ0 is not zero, then ω̇ = α, the angular acceleration 

will be nonzero. This will require a moment about the center of mass, which in the simplest 

configuration sketched, can only come from friction with the plane. Ff R = IGα. Since the 

point in contact with the plane is an instantaneous center of rotation–does not move–this fric­

tion force does no work. Also shown in b) are a variety of configurations of rolling cylinders. 

The solid cylinder has a moment of inertia of IG = 1/2mR2; the cylinder whose mass is con­

centrated in the rim, has a moment of inertia IG = mr2; the cylinder whose mass point is con­

centrated in the center has a moment of inertia of zero. Therefore, no moment is required to 

change its angular velocity and it behaves like a mass point moving on a frictionless surface. The 

collision of two mass points can easily be realized by the collision of two such rolling cylinders. 

Note Cylinder rolling down a ramp 

7




� 

In parallel with our discussion of a block sliding down a ramp in the presence of friction, we now 

consider a cylinder rolling down a ramp in the presence of friction. We assume that friction forces 

are large enough to keep the kinematic relationship between the velocity of the cylinder and the 

angular velocity of the cylinder intact. The cylinder is located at an initial position 1 as shown, 

and is at rest. It is released and rolls down to position 2 where we observe it. The forces acting on 

the cylinder are gravity, the normal force N, and the friction force Ff . Although the friction force 

is necessary to keep the kinematic relationship intact, it does no work; as before, the normal 

force does no work. Therefore, the only work is done by gravity. Thus we can write 

T1 + W12 = T2 (9) 

The initial kinetic energy is zero. The work done by gravity is mg sin αΔs; the final kinetic energy, 

which includes both the kinetic energy due to translation and the kinetic energy due to rotation is 

T2 = 1/2mv2 + 1/2IG(v/R)2 . Therefore, the final velocity is 

2 ∗ g sin αΔs 
v = (10)

1 + IG/R2 

Note Alternative expressions for dW


We have seen in expression (2) that a convenient set of coordinates to express dW are the tangential-

normal-binormal coordinates. Alternative expressions can be derived for other coordinate systems. 

For instance, we can express dW = F dr in:· 
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cartesian coordinates,


dW = Fx dx + Fy dy + Fz dz ,


cylindrical (polar) coordinates, 

dW = Fr dr + Fθ rdθ + Fz dz , 

or spherical coordinates, 

dW = Fr dr + Fθ r cos φ dθ + Fφ rdφ . 

As an illustration, let’s calculate the work done by a constant internal force, such as that due to 

gravity. The force on a particle of mass m is given by F = −mgk. When the particle moves from 

position r1 = x1i + y1j + z1k to position r2 = x2i + y2j + z2k, work is done, and the work may be 

written as 
r2 z2 

W12 = F dr = −mg dz = −mg(z2 − z1) .· 
r1 z1 

Power 

In many situations it is useful to consider the rate at which a device can deliver work. The work 

per unit time is called the power, P . Thus, 

dW dr 
P = = F = F v . 

dt 
· 

dt 
· 

The unit of power in the SI system is the Watt (W). We have that 1 W = 1 J /s. In the English 

system the unit of power is the ft-lb/s. A common unit of power is also the horse power (hp), which 

is equivalent to 550 ft-lb/s, or 746 W. 

Note Efficiency


The ratio of the power delivered out of a system, Pout, to the power delivered in to the system, Pin, 

is called the efficiency, e, of the system. 

Pout 
e = . 

Pin 
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This definition assumes that the energy into and out of the system flows continuously and is not 

retained within the system. The efficiency of any real machine is always less than unity since there 

is always some mechanical energy dissipated as heat due to friction forces. 

ADDITIONAL READING 

•	 J. B. Marion, S. T. Thornton Classical Dynamics of Particles and Systems, Harcourt Brace, 

New York, Section 2.5 

•	 J.L. Meriam and L.G. Kraige, Engineering Mechanics, DYNAMICS, 5th Edition 
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