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Lecture L7 - Relative Motion using Translating Axes 

In the previous lectures we have described particle motion as it would be seen by an observer standing still 

at a fixed origin. This type of motion is called absolute motion. In many situations of practical interest, 

we find ourselves forced to describe the motion of bodies while we are simultaneously moving with respect 

to a fixed reference frame. There are many examples where such situations occur. The absolute motion of 

a passenger inside an aircraft is best described if we first consider the motion of the passenger relative to 

the aircraft, and then the motion of the aircraft relative to the ground. If we try to track the motion of 

aircraft in the airspace using satellites, it makes sense to first consider the motion of the aircraft relative to 

the satellite and then combine this motion with the motion of the satellite relative to the earth’s surface. In 

this lecture we will introduce the ideas of relative motion analysis. 

Types of observers 

For the purpose of studying relative motion, we will consider four different types of observers (or reference 

frames) depending on their motion with respect to a fixed frame: 

• observers who do not accelerate or rotate, i.e. those who at most have constant velocity. 

observers who accelerate but do not rotate • 

observers who rotate but do not translate • 

observers who accelerate and rotate • 

In this lecture we will consider the relative motion involving observers of the first two types, and defer the 

study of relative motion involving rotating frames to the next lecture. 

Relative motion using translating axes 

We consider two particles, A and B in curvilinear motions along two different paths. We describe their 

motion with respect to a fixed reference frame xyz with origin O and with unit vectors i, j and k, as before, 

and call the motion relative to this frame absolute. The position of particle A is given by rA(t) and the 

position of particle B is given by rB (t); both vectors are defined with respect to the fixed reference frame 

O. In addition, it is useful in many problems to ask ”how would B describe the motion of A and how would 

this description be translate to the fixed inertial coordinate system O? 

1 



In order to answer this question, we consider another translating reference frame attached to particle B, 

x�y�z�, with unit vectors i�, j� and k�. Translating means that the angles between the axes xyz and x�y�z� 

do not change during the motion. 

In the figure, we have chosen, for convenience, the axes xyz to be parallel to the axes x�y�z�, but it should be 

clear that one could have non-parallel translating axes. (By our ground rules, these axis must not rotate, 

i.e the angles between them must not change; that possibility will be considered in a subsequent lecture.) 

The position vector rA/B defines the position of A with respect to point B in the reference frame x’y’z’. 

The subscript notation“A/B” means “A relative to B”. The positions of A and B relative to the absolute 

frame are given by the vectors rA and rB , respectively. Thus, we have 

rA = rB + rA/B . 

If we derive this expression with respect to time, we obtain 

ṙA = ṙB + ṙA/B or vA = vB + vA/B , 

which relates the absolute velocities vA and vB to the relative velocity of A as observed by B. Differentiating 

again, we obtain an analogous expression for the accelerations, 

r̈A = r̈B + r̈A/B or aA = aB + aA/B . 

We will now reverse the roles of A and B , asking ”how would A describe the motion of B? We now attach 

the reference frame x�y�z� to A, and then we can observe B from A. The relative motion of B as seen by A 

is now denoted rB/A, the position of B as seen by A. 
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The same arguments as before will give us, 

rB = rA + rB/A, vB = vA + vB/A, aB = aA + aB/A . 

Comparing these expressions with those above, we see that 

rB/A = −rA/B , vB/A = −vA/B , aB/A = −aA/B , 

as expected. 

One important observation is that, whenever the moving system, say A, has a constant velocity relative 

to the fixed system, O, then the acceleration seen by the two observers is the same, i.e., if aA = 0, then 

aB = aB/A. We shall see that this broadens the application of Newton’s second law to systems which have 

a constant absolute velocity. 

Example Glider in cross wind 

Consider a glider flying above the edge of a cloud which is aligned North/South (360o). The glider is flying 

horizontally, and the cloud is stationary with respect to the ground. At the altitude of the glider flight, there 

is a wind velocity, vw, of magnitude 52 knots coming from the direction 240o , as shown in the sketch. 

North
Edge of Cloud

Cloud
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The glider, on the other hand, is flying at a speed vG/w relative to the moving air mass and at an orientation 

given by his compass heading. 

In order to determine the speed of the glider with respect to the ground, we consider a reference frame 

moving with the wind speed and write 

vG = vw + vG/w, 

For these conditions, to balance the effect of wind speed and glider motion so that the glider stays at the 

edge of the cloud, we require 

vG/w ∗ Sin(360o − heading) = vw ∗ Cos(30o) (1) 

Using this diagram, by adding and subtracting the vector components of the various velocities, we can ask 

questions such as: if the glider is flying relative to the wind (vG/w)at a speed of 90 knots, what angle must 

it make with the ground–its absolute course heading–to stay at the edge of the cloud? the glider flies with 

a heading of 330o and a speed (relative to the wind) of 90 knots, it will stay at the edge of the cloud with a 

ground speed of 104 = (26 + 78) knots north; 

By inspection of the diagram below, we can also verify the following situations: if the glider flies with a 

heading of 330o and a speed (relative to the wind) of 90 knots, it will stay at the edge of the cloud with a 
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ground speed of 104 = (26 + 78) knots north; if, on the other hand, the glider flies with a heading of 210o at 

90 knots, the glider will stay at the edge of the cloud with a ground speed of 52 knots south; if the glider flies 

into the wind at 240o, with a speed equal to 52 knots, it will remain stationary with respect to the ground; 

finally, the lowest speed at which the glider can fly to stay at the edge of the cloud is 45 knots and this will 

be possible for a heading of 270o . The ground speed in this case will be 26 knots. 

Example Aircraft towing glider (Meriam) 

Airplane A is flying horizontally with a constant speed of 200km/h, and is towing a glider B. The glider is 

gaining altitude. The tow cable has a length r = 60m, and θ is increasing at a constant rate of 5 degrees per 

second. We want to determine the magnitude of the velocity, vG, and the acceleration, aG, of the glider for 

the instant when θ = 15o . 

The velocity of the glider will be vG = vA + vG/A. The velocity of the glider relative to A is best expressed 

using a polar coordinate system. Thus, we write, 

vG/A = ṙer + rθ̇eθ . 

Since the length of the cable is constant, vr = ṙ = 0, and θ̇ = 5(2π/360) = 0.0874 rad/sec, which gives 

vθ = rθ̇ = 5.236 m/s. We can now transform the velocity vector to cartesian coordinates to obtain, 

vG/A = 5.236eθ = 5.236 sin 15oi + 5.236 cos 15oj = 1.3552i + 5.0575j m/s , 

or, 

vG = ((200/3.6) + 1.3552)i + 5.0575j m/s, vG = 57.135 m/s = 205.7 km/h . 

¨ For the acceleration aG = aG/A, since aA = 0. We also know that θ = 0, and, obviously, r̈ = 0, thus, 

aG/A −rθ er − . er , aG − . .
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Example Aircraft collision avoidance 

Consider two aircrafts, A and B, flying horizontally at the same level with constant velocities vA and vB . 

Aircraft B is capable of determining by measurement the relative position and velocity of A relative to B, 

i.e., rA/B and vA/B . We want to know whether it is possible to determine from this measurement whether 

the two aircraft are on a collision course. 

Take the origin O at the hypothetical point of collision where the two trajectories intersect. If collision is to 

occur, the time taken for both aircraft to reach O will be the same. Therefore, 

rA rB = . 
vA vB 

Now consider the velocity triangle formed by vA = vB + vA/B . 

Clearly, vA is parallel to rA, and vB is parallel to rB . In addition, if collision is to occur, vA/B will be 

parallel to rA/B , since the position and velocity triangles will, in this case, be similar. We see, therefore, 

that the condition for the two planes to collide is that the relative velocity between them is parallel to the 

relative position vector. If aircraft B uses a polar coordinate system (common for radar measurements), 

then the relative position of A with respect to B will be of the form rA/B = rer. Therefore, the velocity 

also has to be of that form, which implies that vθ = rθ̇ = 0, or θ = constant. That is, the angle at which B 

sees A (sometimes called the bearing angle) should not change. 
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Example Velocity made good to windward 

In sailboat racing, the most important variable is the component of velocity made by the sailboat in the 

direction of the wind. Typically sailboats can sail at an angle of 45o relative to the wind direction. Consider 

the sailboat 1 making a velocity vector v1 at an angle of 45o with respect to the wind in the fixed coordinate 

system–he knows his angle relative to the wind from compass measurements. He is racing sailboat 2 who 

makes a velocity vector v2 at an angle to the wind of θ2, neither of which is known to the skipper of sailboat 

1. 

The skipper of sailboat 1 would like to know whether he is traveling faster in the direction of the wind 

than sailboat 2. He sees a distant lighthouse at an angle of 45o from his direction of travel. He lines up 

his opponent with this stationary lighthouse. How can he use this observation to determine whether he is 

winning the race to the weather mark? 

The instantaneous observation of relative velocity in the direction of the wind can be determined by whether 

sailboat 2 pulls ahead of the line between the lighthouse and a fixed point on sailboat 1. Sailboat 1 can 

observe the sign of V2 cos θ2 − V1 cos θ1 but not these quantities individually. However, that combination, 

which he can observe by sighting, is the difference in the velocities of the two sailboats made good in the 

direction of the wind. Therefore, if sailboat 2 drops behind the line of sight to the distant lighthouse, sailboat 

1 is winning the race. However, if sailboat 2 pulls ahead of the line of sight to the distant lighthouse, sailboat 

2 is winning the race. 

ADDITIONAL READING 
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J.L. Meriam and L.G. Kraige, Engineering Mechanics, DYNAMICS, 5th Edition 
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