16.06 Principles of Automatic Control
Lecture 23

Stability Margins

Stability margins measure how close a closed-loop system is to instability, that is, how large
or small a change in the system is required to make it become unstable. The two commonly
used measures of stability are the gain margin and the phase margin.

e The gain margin (GM) is the factor by which the gain can be increased before the
system becomes unstable.

e The phase margin (PM) is the amount of additional phase lag that would make the
phase be —180° where |KG(jw)| = 1.

The GM and PM are important not only because they measure how close the closed-loop

system is to instability, but also because they (but especially the PM) can be used to predict
the transient behavior of the closed-loop system.

Gain and phase margin on Nyquist diagram:
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GM and PM on Bode diagram:
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Relationship between PM and damping

When the phase margin is small, the closed-loop system is close to instability, so that there
will be closed-loop poles near the jw—axis. That is, low PM = low damping ratio.

This result can be made explicit by considering the closed-loop system
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The closed-loop transfer function is
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So,

Can show that, for this system,
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The functional form isn’t really important - the important point is that ( is nearly a linear
function of PM:
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So can often predict (effective) damping ratio using approximation

PM .
¢~ 100 (PM in degrees)

Even when system is not second order, PM is a good predictor of peak overshoot (1),), and
resonant peak magnitude (M,). PM is often specified as a design requirement.

Bode’s Gain-Phase Relationship

We saw that for poles and zeros in the left-half-plane, the phase of G(jw) is proportional to
the slope of the magnitude curve (on a log-log scale), but smeared-out. That is,

LG(jw) ~ 90° x slope of |G|
This idea can be made precise via Bode’s gain-phase theorem:

For any stable, minimum phase system, the phase of G(jw) can
be determined uniquely from the magnitude of G(jw).



The phase is in fact given by

where

M =log|G(jw)| (natural log)
u = log(w/w)
M
Cil_ = slope of Bode plot magnitude

u
W (u) = weighting function

= log(coth(%))

Note that this is a funny sort of convolution - we are convolving a weighting function with
the slope of another function, but working on logarythmic axes!

The weighting function looks like:

Note that 92% of area of W (u) is within +1 decade of the center. So the phase is nearly
completely determined by the slope of M within "1 decade.

Why is this result important? It implies that in almost every case, a well-designed control
loop will have a magnitude plot with slope -1 at the crossovr frequency!*

L Actually, in some cases, the slope might be +1, but this is rare.
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Typical loop gain
for well-designed
control system

In this case, the phase at cross-over will be a weighted average of —90° (weighted a lot),
—180° (weighted some), and 0° (weighted hardly at all). So the phase will be between —90°
and —180°, with probably reasonable PM.
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