16.06 Principles of Automatic Control
Lecture 20

Bode Plots With Complex Poles

Suppose we have a proportional feedback system:

What values of k will lead to instability? Before we answer that, let’s find out what values
lead to neutral stability. Take, as an example,

1

Gls) = s(s+1)2

Using root locus and Routh, we can deduce that the C.L. system is stable for

0<k<?2

The root locus diagram is:
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So neutral stability occurs for k = 2, corresponding to closed-loop poles at w = +1.

This result may be seen clearly on the Bode plot for this system.
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Recall that the root locus condition is that

kG =1



or

G=—1/k

For there to be a closed loop pole on the jw axis for £ > 0, we must have that two conditions
hold. First, G must have phase of —180°. The only frequency at which this happensisw =1
rad/sec. Second, we must have that

kG| =| — 1| =1
1
|G|

=k =

In this case, |G| = 1/2 at w = 1, so k = 2 is the required gain to place a pair of poles on the
Jw axis.

So the Bode plot plays a key role in stability analysis. We already have a partial result:

If the open-loop system KG(s) is stable, and |KG(jw)| < 1 for
all w such that ZKG(jw) = 180°( mod 360°), then the closed-
loop system is stable.

This result follows from our R.L. analysis.

Note that the converse statement is not true,that is, there may be frequencies w such that
|[KG(jw)| > 1 and ZKG(jw) = 180°, and yet the closed loop system is stable.

The Nyquist Criterion is the Frequency Response analogue of the Routh Criterion - it allows
us to count the number of closed-loop, unstable poles. The Nyquist Criterion depends on
Cauchy’s Principle of the Argument, or simply the argument principle.

The Argument Principle

Consider a transfer function H;(s) with pole/zero diagram
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We are going to evaluate H;(s) point-by-point around the contour Cj :
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At each point on the contour, we calculate H;(s) and plot:

Im(H.)

At any point, say sg, the phase of Hi(sg) is

a = /LHi(s) =ZL($0 —z;) — 24(80 — i)
=2 Vi)

As we go around the contour (in this example), each ¥; and ¢; increases and decreases, but
returns to its original value after completing exactly one circuit.

Consider a second example, Hj :
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In this case, as we move once around Cj, V;, W,, and ¢; return to their original values,
but ¢9 decreases by a net 360°. As a result, @« = Z Hy increases by a net 360°. But this is
equivalent to saying that Hy(C}) encircles the origin exactly once in a clockwise direction.

More generally, the contour map Hs(C1) encircles the origin counter-clockwise for each pole
inside (', and clockwise for each zero. More succinctly, for a clockwise contour Cf,

# of clockwise encirclements of the origin by H(C,)=Z - P

where Z = # of zeros of H(s) inside Cf;
and P = # of poles of H(s) inside C}.
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