
Unified Computers & Programming, Spring 2006
Professor Kristina I. Lundqvist

Page 1 of 6

SPL 5: Graphical Priority Queue

Out: Thursday, March 9th; Due: Thursday, March 16th

I. Objectives

Primary Objective:
 Improve your understanding of pointers through the implementation of a
graphical priority queue.

Secondary Objectives:

! Practice file parsing – File I/O. Once data is written to a file, how is it
retrieved and understood? If a program reads “2.3+2.5” from a file, it
should determine that the characters ‘2’, ‘.’, and ‘3’ represent the floating
point value 2.3 and that ‘+’ represents addition. One way a computer can
identify and interpret the useful pieces of information is by parsing.

! Practice code reuse – An important real life skill involving creating and
reusing modular, reliable, pieces of code. A certain popular operating
system consists of 50 million+ lines of code. Can you imagine how long it
would take and how many more bugs would exist if a certain 50-million-
lines-of-code operating system had to be rewritten from scratch each time?

! Introduce a basic Graphics Library – this will add a new dimension to
interfacing with the user outside of the text window that you have been
using.

II. Files

Downloads - Please go to the Unified C&P Website and download the two files
under “Systems Problem Support” (If you haven’t done it last term,
you may also need UnifiedC&PInstallation):

“UnifiedC&PInstallation-Graphics.exe”
“C&P_SPL_5.zip”
Install “UnifiedC&PInstallation-Graphics.exe”. The folder
created by unzipping “C&P_SPL_5.zip” is probably where you will
want to develop your code.

Included files:
“ada_graphics.ads & ada_graphics.adb”
“double_buffer.ads & double_buffer.adb”
“priority_queue.ads & priority_queue.adb”
“priority_queue_graphics.ads & priority_queue_graphics.adb”
“test_queue.adb”
“Input.txt”
“input_generator.exe”
“test_queue.exe”
“test_ada_graphics.exe”
“gnat.ago”

Files you will have to modify (you are allowed to modify any of them):
“priority_queue.adb”
“test_queue.adb”

Unified Computers & Programming, Spring 2006
Professor Kristina I. Lundqvist

Page 2 of 6

III. Overview

This System Problem is a departure from the C&P work you have done in the past.
While you are typically asked to create the programs, this one will ask you to
modify and add sections to existing code. For this SPL you will be pulling
together many of the C&P lessons. Your program will parse/read a file for
information, store this information in a priority queue, and then dynamically draw
how the pointers are being manipulated in the queue to make this all possible. The
final result should be similar to “test_queue.exe”.

First, what is a priority queue? As you should know, a queue is a method of
dynamically storing information using pointers. By definition, a queue is
supposed to be FIFO (First In, First Out). A priority queue is a little different. You
give the element a value when it is Enqueued. Upon Dequeue, the element in the
queue with the smallest or largest associated value is returned. Our priority queue
will return the element with minimum associated value current in the queue.

In the two files you are expected to modify: “priority_queue.adb” and
“test_queue.adb” you will find comments “--Fill in here as needed.” These
are locations that may need code. Since one of the skills tested in this SPL is code
reuse, read the comments in the given code or associated .ads file! You will
find that most of the .adb files are poorly commented, while the .ads files are
richly commented. This is typical of most programming languages, the
specification file or header file is has more explanations.

The procedures in “priority_queue.adb” that require modification are:

1. MakeEmpty
2. Enqueue – Sort the element into the queue using whatever sort you like.
3. Dequeue – No Sorting, just return the head element

A few words on “priority_queue.adb”
The record types that will form the nodes/elements of the queue have
already been defined and can be found in “priority_queue.ads.”
The general structure of the priority queue is depicted in Figure 1. The
Queue Type holds the basic information you need to know about the
Queue, the size and where its Head and Tail are. The Nodes form the
backbone of the Queue. Each Node has a pointer linking it to the next
Node (which should have a greater Value). Each Node also has a data
Element which gives the (X, Y) coordinates at which each Node should be
drawn in the window. The Tail pointer points to the last Node in the
Queue, which has no pointer to any other Node.

ToDo:

! Modify these procedures so that they act as described in
“priority_queue.ads”. (Hint: Look at the “Linked_List” package
on the Unified C&P Website Extra Material, Lecture C5 for
implementation ideas).

Unified Computers & Programming, Spring 2006
Professor Kristina I. Lundqvist

Page 3 of 6

! Interleave into your code, procedures that graphically draw (and erase) the

pointers as they are being manipulated. Look at the helper functions in
“priority_queue” and graphical functions in
“priority_queue_graphics” to make drawing much easier.
Sections of your code that have been modified to have graphics will
typically look like:

EraseSomething(…);-- This is the added graphics
Pointer1 := Pointer2 –- This is the important part
DrawSomething(…); -- This is the added graphics

Figure 1: Structure of Priority Queue. Nodes should be linked from one to the
Next starting with the minimum Value first.

The procedures in “test_queue.adb” that require modification are:
1. Body of Test_Priority_Queue

ToDo: You will need to look at “Test_Ada_Graphics.adb” to get an
idea of what is missing. While most of the initialization needed to create a
window is there, a few lines of file I/O and thread registering need to be
done.

2. Body of Draw_Queue
ToDo: Add the code that allows this procedure to read from the file, create
the element, and call Enqueue to put the element in the priority queue.
The file you will be reading from is “Input.txt.” Note that
Draw_Queue, when properly registered, will be called continuously in a
loop this has an important impact on the code for File I/O.

Head
Tail
Size : Integer

Queue

Value : Float
Element
Next

Node

X : Integer
Y : Integer

Element

Value : Float
Element
Next = Null

Node

X : Integer
Y : Integer

Element

Value : Float
Element
Next

Node

X : Integer
Y : Integer

Element

Unified Computers & Programming, Spring 2006
Professor Kristina I. Lundqvist

Page 4 of 6

A few words on “test_queue.adb”

The Queue that you will be operating on is called “Q” and has already
been defined in the definitions portion of “priority_queue.adb.”
The File being read from is “Input.txt” and is formatted as shown in
Figure 2. The numbers are clustered in groups of 3, a float number used as
the Node’s Value, and an X and Y coordinate for the Node, respectively.

Note: You will ONLY need to call procedure Enqueue from
Draw_Queue. This is why it is important that the Enqueue procedure is
the one that sorts the element into the Priority Queue.

Figure 2: “Input.txt” can be randomly generated by
“input_generator.exe” and has groups of 3 numbers.

IV. How To Start

1. Install “UnifiedC&PInstallation-Graphics.exe”

2. Unzip “C&P_SPL_5.zip” You will probably want to develop your code

in the folder which unzips.

3. Double Click on “test_queue.adb”. This is the main procedure/entry point for
your program. In AdaGide go to “Tools->GNAT Options in Current
Directory”. You should see:

Compiler Options: -IC:\GtkAda-2.4.0\include\gtkada
Gnatmake: -LC:\GtkAda-2.4.0\include\gtkada

If you do NOT see this or you installed “UnifiedC&PInstallation-
Graphics.exe” in a directory other than “C:” please modify these lines
accordingly.

4. Run “test_queue.exe.” This is what your finished product should look

like.

20.3650012
200
400

91.6577965
 600
 400
36.2652487
 350
 400

Input.txt

Unified Computers & Programming, Spring 2006
Professor Kristina I. Lundqvist

Page 5 of 6

Green Pointer – Pointer to the Head of the Queue
Yellow Pointer – Pointer to the Tail of the Queue
Orange Pointer – Pointer to the Newly Created Node/Element
Red Pointer – Pointer using for sorting
Purple Pointer – Pointer used for sorting
Blue Circles – Graphical representation of a Node/Element of the Queue
Green Links – The pointer from one Element to the Next in the Queue.

Note that every time a pointer is given a new value, the old pointer is erased and
the new one drawn. (The .exe has been known to not display correctly on some
machines)

5. Compare “test_ada_graphics.adb” and “test_queue.adb.” What

are the similarities and differences? This should be enough to fill in the
majority of the Test_Priority_Queue body.

6. Double click on “input_generator.exe” to create a new

“Input.txt” file. Open this file and get an idea of its layout. You will see
numbers in groups of 3, a floating point number, followed by two integers.
Each element/node of the priority queue will need to store the float number
and use it as the value by which to sort. The remaining two numbers are the X
and Y coordinates at which the graphical representation of that element should
be drawn.

7. Look at the Enqueue procedure in “priority_queue.ads,” what parameters does

it require?

8. Look over your notes on File I/O. Remember that manipulating a file has three

phases: open, read or write, and close. How do you open a file? How do you
close a file? It is one thing to get text from a file, but how do you get numbers
from a file (Hint: Ada.Float_Text_IO)? How do you know when there is
nothing left in a file to be read?

9. We know that code is executed one line at a time. Where in the body of

Test_Priority_Queue is procedure Draw_Queue called? You should now
know enough to write the code that parses Input.txt.

10. Write the rest of the Draw_Queue procedure. Make sure you call

Priority_Queue_Enqueue.

11. Look over “Linked_List.ads” and .adb. Do you understand how it works?

Code the Prority_Queue procedures. Do NOT worry about the graphical part.
Print text to the output to help you debug what your code is doing!

12. Copy ALL of your code over to a new folder for safe keeping!

13. Look over the ‘Helper Functions’ in “priority_queue.ads” and procedures in

“priority_queue_graphics.ads.” Add the appropriate draw and erase functions
to graphically draw the pointer manipulations.

Unified Computers & Programming, Spring 2006
Professor Kristina I. Lundqvist

Page 6 of 6

V. Grading Scheme (Out of 100)

10 - Complete Window Creation in “Test_Priority_Queue.”
10 - File Parsing in “Test_Priority_Queue” and “Draw_Queue.”
10 - Correct pointer manipulation in “MakeEmpty” procedure
25 - Correct pointer manipulation in “Enqueue” procedure
15 - Correct pointer manipulation in “Dequeue” procedure
5 - Working Graphics for “MakeEmpty”
10 - Working Graphics for “Enqueue”
5 - Working Graphics for “Dequeue”
10 – Paragraph or Pseudo Code on how the pointers are manipulated by

Enqueue and how your graphics window relates (what are all the colorful
pointers doing)?

VI. Turn In Instructions

1. Please zip and turn in ALL the .ads and .adb files you used in developing this
assignment via the on-line submission system (At least make sure
“priority_queue.adb” and “test_queue.adb” are included).

2. Name the zip file: “2006SPL5_LastName_FirstName.zip”
3. Go to the web site to submit the file.
4. Submit the paragraph you wrote in hardcopy.

Reminder:

! READ THE COMMENTS!
! “Linked_List.ads” and “Test_Ada_Graphics.adb” are good resources.
! Remember to check for a null pointer before using it

Assistance:

Optional “Computer” Office Hours are tentatively scheduled for Monday, March
13th and Tuesday, March 14th from 4-6pm in the Computer Lab. Two TAs will be

 available during those time slots to help. Please read your e-mail as
additional hours may be added.

