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Lab 4 Lecture Notes 

Nomenclature 

I

W aircraft weight

S reference area (wing area)

b wing span

c average wing chord

c r root wing chord

c t tip wing chord

λ taper ratio (= c t/c r)

AR wing aspect ratio


o wing root bending inertia

E Young’s modulus
 M

C
C
η
η
P
ρ air density 

elec electric power 

m electric motor efficiency 

p overall propeller efficiency 

L lift coefficient 

D drag coefficient 
c d wing profile drag coefficient 
CDA0 drag area of non-wing components 
δ tip deflection 

o wing root bending moment 

Design Space 

Design Variables are numbers whose values can be freely varied by the designer to define a 
designed object. As a very simple example, consider a rectangular wing with a pre-defined 
airfoil. It can be defined by deciding on the values of the following two design variables: 

{ b , c } (1) 

Placing these variables along orthogonal axes defines a design space , or set of all possible 
design options. Each point in the design space corresponds to a chosen design, as illustrated 
in Figure 1. 
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Figure 1: Two-variable design space of a rectangular wing. 
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Variable Set Choice 

Frequently, an alternative variable set can be defined in terms of the starting variable set. 
For example, we can define the same design space using the variable set 

{AR , S } (2) 

with the following relations translating between the two alternative variable sets: 

AR = b/c b = 
√

S×AR 
√ (3) 

S = b c c = S/AR 

Figure 2 compares the two design spaces. Other variable sets are possible for this case, such 
as {AR, b}, {S, b}, etc. The best variable set is usually the one which gives the simplest or 
clearest means to evaluate the objective function, or performance of the design, so that the 
best point in the design space can be selected. For example, a possible design objective for 
the wing will be to minimize flight power for an electric aircraft. Therefore, the objective 
function to be minimized is 

  
( )

1/2
1 2W 3 1/2 

CDA0/S cd CL 

C
Pelec(AR, S) = 

ηp ηm ρ S 
 

3/2 
+ 

3/2 
+ 

π AR 
 (4) 

L CL 

Since AR and S appear explicitly in the objective function definition, these are probably the 
best choices for the design variables. 

Objective Function Contours 

In practice, the dependence of Pelec on {AR, S} is far more complex than what’s explicitly 
visible in equation (4). For example, the wing weight will clearly depend on {AR, S}, as 
will cd via the chord Reynolds number. Also, ηp will depend on the flight speed, which is 
influenced by wing loading and hence by S. Given quantitative models of all these effects, 
we can numerically determine the value of Pelec for every {AR, S} combination. The results 
might be as shown in Figure 3, which shows the objective function as contours, or isolines. 
The point where the objective function has a minimum represents the optimum design. 

Constraints 

In almost any real design optimization problem, an objective function such as given by 
equation (4) does not capture all considerations which might go into selection of a design. 
Frequently one has to account for constraints which rule out certain regions of the design 
space. One typical constraint which appears in wing design is the structural requirement of 
adequate strength or stiffness. 

To incorporate a stiffness constraint, we first must express the stiffness requirement in 
terms of the chosen design variables, or {AR, S} in this case. We will require that the 
tip-deflection/span δ/b not exceed some reasonable upper limit 

δ/b ≤ 0.05 (5) 

in 1G flight. The tip deflection can be estimated using simple beam theory. Assuming the 
beam curvature to be roughly constant across the span and equal to its value κo at the root, 
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Figure 2: Alternative design variable sets of a rectangular wing. 

we have 

κo = 
Mo 

EIo 

≃ 1 
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Wb 

EIo 

(6) 
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2 

(7) 

3 



S 

24 

lec 

16 

8 

= 20 Pelec Pelec Pelec = 7= 8= 10 

AR 
6 12 18 

Figure 3: Objective function contours (isolines) in design space of a rectangular wing. Black 
dot shows the optimum-design minimum power point. 

δ 1 W b2 

(8) 
b 

≃ 
64 EIo 

Assuming the wing is constructed out of a solid material and has a typical camber of 2–4%, 
the bending inertia of its root airfoil cross section is approximately 

≃ 3 4 τ 3Io 0.04 cr tr = 0.04 c (9) r 

where tr is the maximum root airfoil thickness, and τ = t/c is the airfoil thickness/chord 
ratio. For a straight-taper wing of taper ratio λ, the root chord is related to the average 
chord by 

2 
cr = c (10) 

1+λ 

Combining equations (8), (9), and (10) gives 

( )4 
b2 

= 0.4 (11) 
δ W 1+λ 

b Eτ 3 2 c4 

Putting b and c in terms of our chosen design variables {AR, S} as given by (3), the deflec-
tion/span ratio finally becomes 

( )4
δ W 1+λ AR3 

= 0.4 (12) 
b E τ 3 2 S 

In the design space, the isolines of δ/b are given by rearranging equation (12) into 

  
( )4

W 1+λ 
S = 0.4  AR3 (13) 

E τ 3 (δ/b) 2 
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Figure 4: Wing deflection/span contours (dashed) superimposed on objective function con­
tours (solid). The contour δ/b = 0.05 is the constraint boundary. Black dot shows the 
constrained optimum-design minimum power point. 

which is shown in Figure 4 for three values of δ/b. All points above the δ/b = 0.05 isoline 
satisfy the deflection constraint (5), and hence constitute the feasible design space. The new 
constrained optimum design is the point of minimum objective function which still lies in the 
feasible design space. 

Additional Design Variables 

Most practical design problems have vastly more than the two design variables {AR, S}
assumed in the examples above. A basic rule is that any adjustable quantity which is likely 
to have a strong effect on the constrained objective function should be considered as a design 
variable. One such candidate is the wing taper ratio ct/cr = λ, which clearly has a powerful 
effect on the tip deflection in relation (12). If λ is chosen as a new design variable, the design 
space is now three dimensional as shown in Figure 5. 

{AR , S , λ} (14) 
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Figure 5: Three-variable design space. As before, each point represents a unique design.
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In reality, there would also be other variables such as the modulus E of the construction 
material, CL and cd via airfoil shape, etc. The design space would then be 

AR , S , λ , E , CL , cd . . . (15) { } 

Design Space Slicing 

Because the entire design space of many dimensions is impossible to visualize graphically, we 
typically attempt to get its character by slicing it with a plane defined by only two variables, 
by choosing unique values for all the others. For example, the 2D space in Figure 4 is the 
same as the 3D space in Figure 5 sliced along the λ = 1 plane. Two of the three possible 
slice orientations are also shown in Figure 6. 
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Figure 6: Two 2D slices through a 3D design space. The variable(s) which are not along the 
axes of a slice are held fixed. 

Occasionally it is also useful to slice a design space using 1D lines rather than 2D planes. 
This allows plotting of a quantity of interest, such as Pelec in the current example, along each 
slice line. This is an alternative means of locating the optimum design, in lieu of the contour 
technique shown in Figure 3. 
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Figure 7: Three line slices through a 3D design space.
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